精英家教网 > 高中数学 > 题目详情

【题目】下列命题正确的是( )
A.存在 ,使得 的否定是:不存在 ,使得
B.对任意 ,均有 的否定是:存在 ,使得
C.若 ,则 的否命题是:若 ,则
D.若 为假命题,则命题 必一真一假

【答案】A
【解析】A选项命题的否定是:对任意 ,均有 ,即:不存在 ,使得 ,所以A正确;
B选项命题的否定是:存在 ,使得 ,所以B错;
C选项否命题中“或”应是“且”,所以C错;
D选项命题AB都是假,所以D错;
所以答案是:A.
【考点精析】本题主要考查了四种命题的真假关系和复合命题的真假的相关知识点,需要掌握一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)①、原命题为真,它的逆命题不一定为真;②、原命题为真,它的否命题不一定为真;③、原命题为真,它的逆否命题一定为真;“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数.
(1)若函数 在区间 上是单调函数,试求实数 的取值范围;
(2)已知函数 ,且 ,若函数 在区间 上恰有3个零点,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形 中,点 在线段 上, ,沿直线 翻折成 ,使点 在平面 上的射影 落在直线 上.
(Ⅰ)求证:直线 平面
(Ⅱ)求二面角 的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从 月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量 万件与投入实体店体验安装的费用 万元之间满足 函数关系式.已知网店每月固定的各种费用支出为 万元,产品每 万件进货价格为 万元,若每件产品的售价定为“进货价的 ”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式4ax-1<3x-4(a>0,且a≠1)对于任意的x>2恒成立,则a的取值范围为( )
A.
B.
C.[2,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,且 .
(Ⅰ)设 ,求 的单调区间及极值;
(Ⅱ)证明:函数 的图象在函数 的图象的上方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处的切线斜率为2.
(Ⅰ)求 的单调区间和极值;
(Ⅱ)若 上无解,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 短轴两个端点为 且四边形 是边长为 的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 分别是椭圆长轴的左、右端点,动点 满足 ,连接 ,交椭圆于点 .证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠ABC=60°,ACBD相交于点O,AE⊥平面ABCD,CF//AE,AB=AE=2.

(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BDE所成的角为45°时,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

同步练习册答案