【题目】若关于x的不等式4ax-1<3x-4(a>0,且a≠1)对于任意的x>2恒成立,则a的取值范围为( )
A.![]()
B.
![]()
C.[2,+∞)
D.(2,+∞)
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,过点
分别作两条直线
,
,直线
与抛物线
交于
、
两点,直线
与抛物线
交于
、
两点,若
与
的斜率的平方和为1,则
的最小值为( )
A.16
B.20
C.24
D.32
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点G是△ABO的重心. ![]()
(1)求
+
+
;
(2)若PQ过△ABO的重心G,且
=
,
=
,
=m
,
=n
,求证:
+
=3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=
x2-mln x,g(x)=x2-(m+1)x.
(1)求函数f(x)的单调区间;
(2)当m≥0时,讨论函数f(x)与g(x)图象的交点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
的右顶点为
,左、右焦点分别为
,过点
且斜率为
的直线与
轴交于点
,与椭圆交于另一个点
,且点
在
轴上的射影恰好为点
.![]()
(1)求椭圆
的标准方程;
(2)过点
的直线与椭圆交于
两点(
不与
重合),若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.存在
,使得
的否定是:不存在
,使得 ![]()
B.对任意
,均有
的否定是:存在
,使得 ![]()
C.若
,则
或
的否命题是:若
,则
或 ![]()
D.若
为假命题,则命题
与
必一真一假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间中,
是两条不同的直线,
是两个不同的平面,则下列命题中的真命题是( )
A.若
,
,则 ![]()
B.若
,
,
,则 ![]()
C.若
,
,则 ![]()
D.若
,
则 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在
上的函数
满足
,且
是偶函数,当
时,
.令
,若在区间
内,函数
有4个不相等实根,则实数
的取值范围是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价:若用水量不超过12吨时,按4元/吨计算水费;若用水量超过12吨且不超过14吨时,超过12吨部分按6.60元/吨计算水费;若用水量超过14吨时,超过14吨部分按7.8元/吨计算水费.为了了解全市居民月用水量的分布情况,通过抽样,获得了100户居民的月用水量(单位:吨),将数据按照
分成8组,制成了如图1所示的频率分布直方图.![]()
(Ⅰ)假设用抽到的100户居民月用水量作为样本估计全市的居民用水情况.
(ⅰ)现从全市居民中依次随机抽取5户,求这5户居民恰好3户居民的月用水量都超过12吨的概率;
(ⅱ)试估计全市居民用水价格的期望(精确到0.01);
(Ⅱ)如图2是该市居民李某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
.若李某2016年1~7月份水费总支出为294.6元,试估计李某7月份的用水吨数.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com