【题目】已知椭圆 的左、右焦点分别为 短轴两个端点为 且四边形 是边长为 的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若 分别是椭圆长轴的左、右端点,动点 满足 ,连接 ,交椭圆于点 .证明: 为定值.
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.存在 ,使得 的否定是:不存在 ,使得
B.对任意 ,均有 的否定是:存在 ,使得
C.若 ,则 或 的否命题是:若 ,则 或
D.若 为假命题,则命题 与 必一真一假
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在 上的函数 满足 ,且 是偶函数,当 时, .令 ,若在区间 内,函数 有4个不相等实根,则实数 的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区 的年平均浓度不得超过3S微克/立方米, 的24小时平均浓度不得超过75微克/立方米.某市环保局随机抽取了一居民区2016年20天 的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如图表:
组别 | 浓度(微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(Ⅰ)将这20天的测量结果按表中分组方法绘制成的样本频率分布直方图如图.
(ⅰ)求图中 的值;
(ⅱ)在频率分布直方图中估算样本平均数,并根据样本估计总体的思想,从 的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.
(Ⅱ)将频率视为概率,对于2016年的某3天,记这3天中该居民区 的24小时平均浓度符合环境空气质量标准的天数为 ,求 的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的最小正周期为 ,将函数 的图象向左平移 个单位长度,再向下平移 个单位长度,得到函数 的图象.
(Ⅰ)求函数 的单调递增区间;
(Ⅱ)在锐角 中,角 的对边分别为 .若 , ,求 面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形 中,点 在线段 上, , ,沿直线 将 翻折成 ,使点 在平面 上的射影 落在直线 上.
(Ⅰ)求证:直线 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com