精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax(a>0且a≠1).
(1)当a=e时,g(x)=mx2(m>0,x∈R),
①求H(x)=f(x)g(x)的单调增区间;
②当x∈[-2,4]时,讨论曲线y=f(x)与y=g(x)的交点个数.
(2)若A,B是曲线y=f(x)上不同的两点,点C是弦AB的中点,过点C作x轴的垂线交曲线y=f(x)于点D,kD是曲线y=f(x)在点D处的切线的斜率,试比较kD与kAB的大小.
考点:利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)①利用导数判断函数的单调性,求得单调区间;②当m>0时,曲线y=f(x)与曲线y=g(x)的公共点个数即方程ex=mx2根的个数.
 由ex=mx2
1
m
=
x2
ex
h(x)=
x2
ex
,利用导数研究函数h(x)的单调性,即可得出结论;
(2)根据导数的几何意义,利用导数与曲线切线斜率间的关系证明.
解答: 解:(1)①H(x)=f(x)g(x)=mx2ex,则H'(x)=mxex(x+2)>0得x>0或x<-2,
所以H(x)=f(x)g(x)的单调增区间为(0,+∞),(-∞,-2).
②当m>0时,曲线y=f(x)与曲线y=g(x)的公共点个数即方程ex=mx2根的个数.
 由ex=mx2
1
m
=
x2
ex
h(x)=
x2
ex
h′(x)=
x(2-x)
ex

所以在R上不间断的函数h(x)=
x2
ex
在(-∞,0)上递减,在(0,2)上递增,在(2,+∞)上递减,
又因为m>0,h(0)=0,h(2)=
4
e2
,h(4)=
16
e4
,h(-2)=4e2

所以当h(2)<
1
m
≤h(-2)
时一公共点,解得
1
4e2
≤m<
e2
4

0<
1
m
<h(4)
1
m
=h(2)
时两公共点,解得m=
e2
4
m>
e4
16

h(4)≤
1
m
<h(2)
时三公共点,解得
e2
4
<m≤
e4
16

(2)设A(x1,f(x1)),B(x2,f(x2))(x1<x2)则kAB=
f(x2)-f(x1)
x2-x1
kD=f′(
x1+x2
2
)

kAB-kD=
ax2-ax1
x2-x1
-a
x1+x2
2
•lna
=
a
x2+x1
2
x2-x1
[a
x2-x1
2
-a
x1-x2
2
-(x2-x1)lna]

x2-x1
2
=t>0
,L(x)=at-a-t-2tlna,则L'(x)=lna(at+a-t-2),
①当a>1时,at>1,lna>0,则L'(t)=(lna)(at+a-t-2)>0,
所以L(t)在(0,+∞)递增,则L(t)>L(0)=0,
又因为
a
x1+x2
2
x2-x1
>0
,所以
a
x1+x_
2
x2-x1
•[a
x2-x1
2
-a
x1-x2
2
-(x2-x1)lna]>0

所以kAB-kD>0;
②当0<a<1时,0<at<1,lna<0
则L'(t)=lna(at+a-t-2)<0,所以L(t)在(0,+∞)递减,则L(t)<L(0)=0,
又因为
a
x2+x1
2
x2-x1
>0
,所以
a
x2+x1
2
x2-x1
[a
x2-x1
2
-a
x1-x2
2
-(x2-x1)lna]<0

所以kAB-kD<0,
综上:当a>1时kAB>kD;当0<a<1时kAB<kD
点评:本题主要考查利用导数研究函数的单调性、极值、求曲线曲线的斜率等问题,逻辑思维强,考查学生的分析问题,解决问题的能力及运算求解能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
a
x
)-x,若对任意的x∈(0,1),有不等式f(1-x)f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若?x∈D,?y∈D,使得f(y)=-f(x)成立,则称函数f(x)为“美丽函数”.下列所给出的五个函数:
①y=x2
②y=
1
x-1

③f(x)=ln(2x+3);
④y=2x-2-x
⑤y=2sinx-1.
其中是“美丽函数”的序号有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数F(x)=(x2+
1
x
)2
+(x+
1
x2
)2
在区间(0,
3
2
]上的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+(a+1)x2+(a+1)x+a,在其定义域内既有极大值又有极小值,则实数a的取值范围是(  )
A、-1<a<2
B、a>2或a<-1
C、a<-1
D、a>2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l与椭圆
y2
a2
+
x2
b2
=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且椭圆的离心率e=
3
2
,又椭圆经过点(
3
2
,1)
,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在地面上某处,测得塔顶的仰角为θ,由此处向塔走30米,测得塔顶的仰角为2θ,再向塔走10
3
米,测得塔顶的仰角为4θ,试求角θ的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为60°,且|
a
|=2,|
b
|=1,求
a
-
b
a
+2
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(cosα,sinα),B(cosβ,sinβ),且
5
|AB|=2,
(1)求cos(α-β)的值;
(2)设α∈(0,
π
2
),β∈(
2
,0),且cos(
2
-β)=-
-5
13
,求sinα的值.

查看答案和解析>>

同步练习册答案