精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+(a+1)x2+(a+1)x+a,在其定义域内既有极大值又有极小值,则实数a的取值范围是(  )
A、-1<a<2
B、a>2或a<-1
C、a<-1
D、a>2
考点:利用导数研究函数的极值
专题:导数的综合应用
分析:函数f(x)在R上既有极大值又有极小值,说明其图象先增后减再增,等价于其导函数有两个不相等的零点,即△>0.
解答: 解:函数f(x)的定义域为R,f′(x)=3x2+2(a+1)x+a+1,
∵f(x)在其定义域内既有极大值又胡极小值,∴3x2+2(a+1)x+(a+1)=0有两个不相等的实数根,
∴△=4(a+1)2-12(a+1)>0解得:a<-1或a>2.
故选择:B.
点评:本题考查三次函数极值存在的条件,运用等价转化思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面
α分别与直线BC,AD相交于点G,H,下列判断中:
①对于任意的平面α,都有S△EFG=S△EFH
②存在一个平面α0,使得点G在线段BC上,点H在线段AD的延长线上;
③对于任意的平面α,都有直线GF,EH,BD相交于同一点或相互平行;
④对于任意的平面α,当G,H在线段BC,AD上时,几何体AC-EGFH的体积是一个定值.
其中正确的序号是(  )
A、①③④B、③④
C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=logax(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数(1-i)•(1+i)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式-5x≤x2+mx+5≤4恰好有一个实数解,则实数m的取值集合是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0且a≠1).
(1)当a=e时,g(x)=mx2(m>0,x∈R),
①求H(x)=f(x)g(x)的单调增区间;
②当x∈[-2,4]时,讨论曲线y=f(x)与y=g(x)的交点个数.
(2)若A,B是曲线y=f(x)上不同的两点,点C是弦AB的中点,过点C作x轴的垂线交曲线y=f(x)于点D,kD是曲线y=f(x)在点D处的切线的斜率,试比较kD与kAB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF=1,
(1)求证:BD⊥平面AED;
(2)求B到平面FDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)(lg2)2+lg2×lg50+lg25;
(2)2log2
1
4
+(
9
16
)
1
2
+lg20-lg2-(log32)(log23)+(
2
-1)lg1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数f(x)的图象上
(1)求证:{an}为等差数列;
(2)设bn=
3
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

同步练习册答案