精英家教网 > 高中数学 > 题目详情
已知向量
a
b
的夹角为60°,且|
a
|=2,|
b
|=1,求
a
-
b
a
+2
b
的夹角.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由题意求得
a
b
、|
a
-
b
|=
(
a
-
b
)
2
、|
a
+2
b
|=
(
a
+2
b
)
2
、(
a
-
b
)•(
a
+2
b
)的值.设
a
-
b
a
+2
b
的夹角为θ,再由cosθ=
(
a
-
b
)•(
a
+2
b
)
|
a
-
b
|•|
a
+2
b
|
 的值,求得θ 的值.
解答: 解:由题意可得
a
b
=2×1×cos60°=1,|
a
-
b
|=
(
a
-
b
)
2
=
4-2+1
=
3
,|
a
+2
b
|=
(
a
+2
b
)
2
=
4+4+4
=2
3

a
-
b
)•(
a
+2
b
)=
a
2
+
a
b
-2
b
2
=4+1-2=3.
设求
a
-
b
a
+2
b
的夹角为θ,则 cosθ=
(
a
-
b
)•(
a
+2
b
)
|
a
-
b
|•|
a
+2
b
|
=
3
3
•2
3
=
1
2
,∴θ=
π
3

a
-
b
a
+2
b
的夹角为
π
3
点评:本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量数量积的定义,求向量的模,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0

(1)求z=x+2y的最大和最小值.
(2)求z=
y
x
的取值范围.
(3)求z=x2+y2的最大和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax(a>0且a≠1).
(1)当a=e时,g(x)=mx2(m>0,x∈R),
①求H(x)=f(x)g(x)的单调增区间;
②当x∈[-2,4]时,讨论曲线y=f(x)与y=g(x)的交点个数.
(2)若A,B是曲线y=f(x)上不同的两点,点C是弦AB的中点,过点C作x轴的垂线交曲线y=f(x)于点D,kD是曲线y=f(x)在点D处的切线的斜率,试比较kD与kAB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(-6)15÷(-8)5÷(-9)7+(-0.75)3×(-2)6

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(1)(lg2)2+lg2×lg50+lg25;
(2)2log2
1
4
+(
9
16
)
1
2
+lg20-lg2-(log32)(log23)+(
2
-1)lg1

查看答案和解析>>

科目:高中数学 来源: 题型:

一台机器由于使用时间较长,生产的零件会有一些缺损,按不同的转速生产出来的零件有缺损的统计数据如下表
转速x转/秒681214
每小时生产有缺损零件数y/个2468
问:
(1)请画出上表数据的散点图;
(2)请根据散点图,判断转速x和每小时生产的缺损零件数y之间是否具有线性关系;
参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
.
y
-
b
x,若有,求回归直线方程y=bx+a;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1(-1,0),F2(1,0),且经过点(1,
3
2
),点A(xA,yA),(yA>0)是椭圆上一点,连接AF1,AF2并延长交椭圆于B,C两点.
(1)求椭圆方程;
(2)若
AF1
=
5
3
F1B
,求点A坐标;
(3)当B,C的纵坐标之比等于2时,求点A坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,当x∈(0,+∞)时,f(x)=x2+x-1.
(1)求f(0)的值;
(2)求x∈(-∞,0)时,f(x)的解析式;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知tanα=-
1
3
,求
sinα-2cosα
3sinα+4cosα

(2)证明:
2sin(π+θ)•cosθ-1
1-2sin2θ
=
tan(9 π+θ)-1
tan(π+θ)+1

查看答案和解析>>

同步练习册答案