精英家教网 > 高中数学 > 题目详情
20.已知抛物线方程为y2=4x,点Q的坐标为(2,3),P为抛物线上动点,则P到准线的距离和到点Q的距离之和的最小值为(  )
A.3B.2$\sqrt{2}$C.$\sqrt{11}$D.$\sqrt{10}$

分析 利用抛物线的定义进行转化,可知当三点共线时即可得出.

解答 解:如图所示
抛物线y2=4x的焦点为F(1,0),准线l:x=-1.
过点P作PM⊥l,垂足为M.
则|PM|=|PF|.
由Q(2,3)在抛物线外,
因此当F、P、Q三点共线时,|PF|+|PQ|取得最小值.
∴(|PF|+|PQ|)min=|QF|=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$.
即|PM|+|PQ|的最小值为$\sqrt{10}$.
故选D.

点评 本题考查了抛物线的定义及其三点共线的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.若直线l过点(0,2),且经过两条直线2x-3y-3=0和x+y+2=0的交点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线x2=6y的准线方程为(  )
A.x=-$\frac{3}{2}$B.x=-3C.y=-$\frac{3}{2}$D.y=-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知曲线C:y2=2px(p>0)过定点(1,1),点P是曲线C上的动点,过点P的圆M:(x-t)2+y2=1(t>1)的切线l1,l2分别交曲线C于另外两点A,B.
(Ⅰ)求曲线C的方程;
(Ⅱ)若t=$\sqrt{2}$,点P为原点,判断直线AB与圆的位置关系;
(Ⅲ)对任意的动点P,是否存在实数t,使得直线AB与圆相切?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于AB两点,则||FA|-|FB||=(  )
A.4$\sqrt{2}$B.8C.8$\sqrt{2}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线l:y=2x+4与抛物线C:y=ax2(a>0)交于M,N两点,直线l与x轴交于A点,若$\overrightarrow{AN}$=4$\overrightarrow{AM}$,则抛物线C的方程为y=2x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列关于函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象叙述正确的是(  )
A.关于原点对称B.关于y轴对称
C.关于点($\frac{π}{4}$,0)对称D.关于直线x=$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知随机变量x服从正态分布N(2,1).若P(1≤x≤3)=0.6826,则P(x>3)等于0.1587.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx-ax-$\frac{a-1}{x}$(a∈R),若f(x)≤-1对定义域内的x恒成立
(1)求实数a的取值范围
(2)对任意的θ∈[0,$\frac{π}{2}$),证明f(1-sinθ)≤f(1+sinθ)

查看答案和解析>>

同步练习册答案