精英家教网 > 高中数学 > 题目详情
12.下列关于函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象叙述正确的是(  )
A.关于原点对称B.关于y轴对称
C.关于点($\frac{π}{4}$,0)对称D.关于直线x=$\frac{π}{4}$对称

分析 分别由正弦函数和正切函数的对称性可得.

解答 解:由2x=kπ+$\frac{π}{2}$可得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴当k=0时,可得y=$\sqrt{3}$cos2x的图象关于点($\frac{π}{4}$,0)对称,
同理由x-$\frac{π}{4}$=$\frac{kπ}{2}$可得x=x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z
∴可得y=tan(x-$\frac{π}{4}$)的图象关于点($\frac{π}{4}$,0)对称,
∴函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象关于点($\frac{π}{4}$,0)对称
故选:C

点评 本题考查三角函数的对称性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.抛物线y2=2px(p>0)和抛物线x2=2py(p>0)的一个公共点可能是(  )
A.(1,1)B.(2,1)C.(1,2)D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线y2=6x和点P(4,1),直线l经过点P且与抛物线交于A、B两点,O为坐标原点.
(1)当点P恰好为线段AB的中点时,求l的方程;
(2)当直线l的斜率为1时,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知抛物线方程为y2=4x,点Q的坐标为(2,3),P为抛物线上动点,则P到准线的距离和到点Q的距离之和的最小值为(  )
A.3B.2$\sqrt{2}$C.$\sqrt{11}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y=2ax2过点(1,4),则焦点坐标为(0,$\frac{1}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的内角∠A、∠B、∠C所对的边长分别为a、b、c且b=3,c=1,∠A=2∠B,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知0<α,β<π,且cosα+cosβ-cos(α+β)=$\frac{3}{2}$,则2α+β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$ 其中an=$\frac{1}{2}$+n,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+2≥0}\\{x+y-1≤0}\\{y≥0}\end{array}\right.$,则z=2x+y的最小值是(  )
A.-4B.-6C.1D.2

查看答案和解析>>

同步练习册答案