精英家教网 > 高中数学 > 题目详情
1.已知bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$ 其中an=$\frac{1}{2}$+n,求{bn}的前n项和Tn

分析 an=$\frac{1}{2}$+n=$\frac{1+2n}{2}$,可得bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$=$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$于是数列{bn}的前n项和Tn=$(1+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+$(\frac{1}{5}+\frac{1}{7})$-…+$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,对n分类讨论即可得出.

解答 解:∵an=$\frac{1}{2}$+n=$\frac{1+2n}{2}$,∴$\frac{1}{{a}_{n}}$=$\frac{2}{2n+1}$,
∴bn=(-1)n+1$\frac{n}{{a}_{n}•{a}_{n-1}}$=$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$
∴数列{bn}的前n项和Tn=$(1+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+$(\frac{1}{5}+\frac{1}{7})$-…+$(-1)^{n+1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,
当n为偶数时,Tn=$1-\frac{1}{2n+1}$=$\frac{2n}{2n+1}$;
当n为奇数时,Tn=$1+\frac{1}{2n+1}$=$\frac{2n+2}{2n+1}$.

点评 本题考查了“裂项求和”、分类讨论的思想方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.抛物线x2=6y的准线方程为(  )
A.x=-$\frac{3}{2}$B.x=-3C.y=-$\frac{3}{2}$D.y=-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列关于函数f(x)=$\sqrt{3}$cos2x+tan(x-$\frac{π}{4}$)的图象叙述正确的是(  )
A.关于原点对称B.关于y轴对称
C.关于点($\frac{π}{4}$,0)对称D.关于直线x=$\frac{π}{4}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知随机变量x服从正态分布N(2,1).若P(1≤x≤3)=0.6826,则P(x>3)等于0.1587.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\sqrt{tan(2x-\frac{π}{3})}-\sqrt{3}$的定义域为(  )
A.($\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈zB.[$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{7π}{12}$$+\frac{kπ}{2}$),k∈z
C.[$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{5π}{6}$+$\frac{kπ}{2}$),k∈zD.[$\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,若a1=-11,a4+a6=-6.
(1)求数列{an}的通项公式;
(2)求当Sn取最小值时,序号n的值,并求出Sn的最小值;
(3)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在平面直角坐标系xoy中,将直线y=$\frac{x}{2}$与直线x=1及x轴所围成的图形绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥=${∫}_{0}^{1}$π($\frac{x}{2}$)2dx=$\frac{π}{12}{x}^{3}$|${\;}_{0}^{1}$=$\frac{π}{12}$据此类比:将曲线y=x2(x≥0)与直线y=2及y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=lnx-ax-$\frac{a-1}{x}$(a∈R),若f(x)≤-1对定义域内的x恒成立
(1)求实数a的取值范围
(2)对任意的θ∈[0,$\frac{π}{2}$),证明f(1-sinθ)≤f(1+sinθ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.为了增强学生的环保意识,某数学兴趣小组对空气质量进行调查,按地域把24个城市分成甲、乙、丙三组,对应的城市的个数分别为4、8、12.若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为3.

查看答案和解析>>

同步练习册答案