| A. | 4$\sqrt{2}$ | B. | 8 | C. | 8$\sqrt{2}$ | D. | 16 |
分析 先设点A,B的坐标,求出直线方程后与抛物线方程联立消去y得到关于x的一元二次方程,求出两根,再由抛物线的定义得到答案.
解答 解:抛物线y2=8x的焦点F(2,0),准线为x=-2.
设A(x1,y1),B(x2,y2)
由$\left\{\begin{array}{l}{y=x-2}\\{{y}^{2}=8x}\end{array}\right.$,可得x2-12x+4=0,解得x1=6+4$\sqrt{2}$,x2=6-4$\sqrt{2}$,
由抛物线的定义可得|FA|=x1+2=8+4$\sqrt{2}$,|FB|=x2+2=8-4$\sqrt{2}$,
则||FA|-|FB||=8$\sqrt{2}$,
故选C.
点评 本题主要考查直线与抛物线的位置关系,注意抛物线定义的运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 18$\sqrt{3}$ | B. | 20$\sqrt{3}$ | C. | 22$\sqrt{3}$ | D. | 24$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,1] | C. | ($\frac{\sqrt{2}}{2}$,1] | D. | ($\frac{\sqrt{2}}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2$\sqrt{2}$ | C. | $\sqrt{11}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com