精英家教网 > 高中数学 > 题目详情
6.已知抛物线x2=4y,过点P(0,2)做斜率分别为k1,k2的直线l1,l2,与抛物线分别交于两点,若k1k2=-$\frac{3}{4}$,则四个交点构成的四边形面积的最小值为(  )
A.18$\sqrt{3}$B.20$\sqrt{3}$C.22$\sqrt{3}$D.24$\sqrt{3}$

分析 设直线l1:y=k1x+2,l2:y=k2x+2,联立抛物线方程,运用韦达定理和弦长公式,结合条件,化简整理,令t=k1-k2,设k1>0,k2<0,再由基本不等式和二次函数的性质,即可求得最小值.

解答 解:设直线l1:y=k1x+2,l2:y=k2x+2,
将y=k1x+2代入抛物线方程,可得x2-4k1x-8=0,
即有x1+x2=4k1,x1x2=-8,
则弦长AC=$\sqrt{1+{{k}_{1}}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=4$\sqrt{1+{{k}_{1}}^{2}}$•$\sqrt{2+{{k}_{1}}^{2}}$,
同样可得弦长BD=4$\sqrt{1+{{k}_{2}}^{2}}$•$\sqrt{2+{{k}_{2}}^{2}}$,
由于k1k2=-$\frac{3}{4}$,不妨设k1>0,k2<0,两直线的夹角θ的正切为tanθ=|$\frac{{k}_{1}-{k}_{2}}{1+{k}_{1}{k}_{2}}$|=4|k1-k2|,
四边形ABCD的面积为S=$\frac{1}{2}$AC•BD•sinθ=8($\sqrt{1+{{k}_{1}}^{2}}$•$\sqrt{1+{{k}_{2}}^{2}}$)•($\sqrt{2+{{k}_{1}}^{2}}$•$\sqrt{2+{{k}_{2}}^{2}}$)sinθ
=8$\sqrt{1+\frac{9}{16}+{{k}_{1}}^{2}+{{k}_{2}}^{2}}$•$\sqrt{4+\frac{9}{16}+2({{k}_{1}}^{2}+{{k}_{2}}^{2})}$•$\frac{4|{k}_{1}-{k}_{2}|}{\sqrt{1+16({k}_{1}-{k}_{2})^{2}}}$
=8(k1-k2)$\sqrt{\frac{73}{16}+2({{k}_{1}}^{2}+{{k}_{2}}^{2})}$,
令t=k1-k2=k1+$\frac{3}{4{k}_{1}}$≥2$\sqrt{\frac{3}{4}}$=$\sqrt{3}$,
则有S=8t$\sqrt{\frac{25}{16}+2{t}^{2}}$=8$\sqrt{{t}^{2}(\frac{25}{16}+2{t}^{2})}$≥8$\sqrt{3×(\frac{25}{16}+6)}$=22$\sqrt{3}$.
当且仅当k1=-k2=$\frac{\sqrt{3}}{2}$取得最小值,
即有四边形面积的最小值为22$\sqrt{3}$.
故选C.

点评 本题考查抛物线的方程的运用,主要考查直线和抛物线方程联立,运用韦达定理和弦长公式,同时考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设Sn是公差不为零的等差数列{an}的前n项和,且a1>0,若S5=S9,则当Sn最大时,n=(  )
A.6B.7C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a1=1,an=5an-1+2•5n-1,求证{$\frac{{a}_{n}}{{5}^{n}}$}成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知抛物线C:y2=x的焦点为F,A(x0,y0)是抛物线上一点,|AF|=$\frac{5}{4}$x0,则x0=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设抛物线y2=2x的准线为l,P为抛物线上的动点,定点A(2,3),则AP与点P到准线l的距离之和的最小值为$\frac{3\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.抛物线x2=6y的准线方程为(  )
A.x=-$\frac{3}{2}$B.x=-3C.y=-$\frac{3}{2}$D.y=-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线E:y2=x,
(Ⅰ)设点P在抛物线E上,若点P到直线y=x+1的距离最小,求点P的坐标;
(Ⅱ)对于定点m(x0,y0),直线l:y0y=$\frac{x+{x}_{0}}{2}$称为点M关于抛物线y2=x的伴随直线,设M(2,1)的伴随直线为l,过M作直线交抛物线E于A、B两点,再过A、B分别作l的垂线,垂足分别为A1,B1,求证:$\frac{|A{A}_{1}|}{|B{B}_{1}|}=\frac{|AM|}{|BM|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F为抛物线y2=8x的焦点,过F且斜率为1的直线交抛物线于AB两点,则||FA|-|FB||=(  )
A.4$\sqrt{2}$B.8C.8$\sqrt{2}$D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\sqrt{tan(2x-\frac{π}{3})}-\sqrt{3}$的定义域为(  )
A.($\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈zB.[$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{7π}{12}$$+\frac{kπ}{2}$),k∈z
C.[$\frac{π}{6}$+$\frac{kπ}{2}$′$\frac{5π}{6}$+$\frac{kπ}{2}$),k∈zD.[$\frac{π}{3}$+$\frac{kπ}{2}$,$\frac{5π}{12}$+$\frac{kπ}{2}$),k∈z

查看答案和解析>>

同步练习册答案