精英家教网 > 高中数学 > 题目详情
18.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A-EF-C的度数为θ.
(Ⅰ)当θ=90°时,即得到图(2)求二面角A-BF-C的余弦值;
(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.

分析 (Ⅰ)推导出AE⊥平面CEFB,过点E向BF作垂线交BF延长线于H,连接AH,则∠AHE为二面角A-BF-C的平面角,由此能求出二面角A-BF-C的余弦值.
(Ⅱ)过点A向CE作垂线,垂足为G,由AB⊥CF,得GB⊥CF,由此能求出cosθ的值.

解答 解:(Ⅰ)∵平面AEF⊥平面CEFB,且EF⊥EC,
∴AE⊥平面CEFB,
过点E向BF作垂线交BF延长线于H,连接AH,
则∠AHE为二面角A-BF-C的平面角
设$BC=2a,则EF=a,AB=4a,AC=2\sqrt{3}a$,
$AE=\sqrt{3}a$,$EH=\frac{{\sqrt{3}}}{2}a$,
∴$cos∠AHE=\frac{EH}{AH}=\frac{{\frac{{\sqrt{3}}}{2}a}}{{\sqrt{3{a^2}+\frac{3}{4}{a^2}}}}=\frac{{\sqrt{5}}}{5}$,
∴二面角A-BF-C的余弦值为$\frac{\sqrt{5}}{5}$.(7分)
(Ⅱ)过点A向CE作垂线,垂足为G,如果AB⊥CF,
则根据三垂线定理有GB⊥CF,
∵△BCF为正三角形,∴$CG=BCtan3{0}^{°}=\frac{2\sqrt{3}}{3}a$,则$GE=\frac{{\sqrt{3}}}{3}a$,
∵$AE=\sqrt{3}a$,∴$cosθ=\frac{GE}{AE}=\frac{1}{3}$,
∴cosθ的值为$\frac{1}{3}$.(15分)

点评 本题考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.阅读如图所示的程序框图,运行相应程序,则输出的S=(  )
A.2.$\stackrel{•}{6}$B.3.0$\stackrel{•}{6}$C.4.1$\stackrel{•}{6}$D.4.5$\stackrel{•}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱柱ABC-A1B1C1中,侧棱AA1⊥面ABC,AC1⊥面CBA1,AC1∩A1C=F.
(1)证明:A1C1⊥B1C1
(2)设A1C1=B1C1=2,E为AB的中点,求E点到FC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知ABCDEF是正六边形,GA、ND都垂直于平面ABCDEF,平面FGN交线段DE于点R,点M是CD的中点,AB=DN=1,AG=2.
(1)求证:AM∥平面GFRN;
(2)求二面角A-GF-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个底面边长为2的正四棱柱截去一部分得到一个几何体,该几何体的三视图如图所示,若该几何体的体积为13,则图中x的值为(  )
A.2.5B.3C.2D.1.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,底面ABCD是边长为2的正方形,PA=PB,E为PC上的点,且BE⊥平面PAC.
(Ⅰ)求证:PA⊥平面PBC
(Ⅱ)求二面角P-AC-B的正弦值;
(Ⅲ)求点D到平面PAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=x-$\frac{1}{x}$,若f(mx)+mf(x)<0对?x∈[1,+∞)恒成立,则实数m的取值范围为m<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知一个几何体的三视图如图所示,则该几何体的体积为(  )
A.7B.7$\frac{1}{3}$C.7$\frac{2}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.由y=$\frac{1}{x}$,x轴及x=1,x=2围成的图形的面积为(  )
A.ln2B.lg2C.$\frac{1}{2}$D.1

查看答案和解析>>

同步练习册答案