精英家教网 > 高中数学 > 题目详情
13.一个底面边长为2的正四棱柱截去一部分得到一个几何体,该几何体的三视图如图所示,若该几何体的体积为13,则图中x的值为(  )
A.2.5B.3C.2D.1.5

分析 由三视图知该几何体是一个正四棱柱截去一个三棱柱所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.

解答 解:根据三视图可知几何体是一个正四棱柱截去一个三棱柱所得的组合体,
直观图如图所示:截面是平行四边形ABCD,
∵该几何体的体积为13,正四棱柱的底面边长为2,
∴$2×2×4-\frac{1}{2}×2×(4-x)×2$=13,解得x=2.5,
故选:A.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知fn(x)=(1+x)n
(1)若f2016(x)=a0+a1x+a2x2+…+a2015x2015+a2016x2016,求a1+a2+…+a2015+a2016的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图如图所示,则该几何体的体积为$\frac{40}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在矩形ABCD中,AB=4,BC=8,E为边AD的中点,分别沿BE,CE将△ABE,△DCE折叠,使平面ABE和平面DCE均与平面BCE垂直.

(Ⅰ)证明:AD∥平面BEC;
(Ⅱ)求点E到平面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,棱长为a的正方体,N是棱A1D1的中点;
(I)求直线AN与平面BB1D1D所成角的大小;
(Ⅱ)求B1到平面ANC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图(1)E,F分别是AC,AB的中点,∠ACB=90°,∠CAB=30°,沿着EF将△AEF折起,记二面角A-EF-C的度数为θ.
(Ⅰ)当θ=90°时,即得到图(2)求二面角A-BF-C的余弦值;
(Ⅱ)如图(3)中,若AB⊥CF,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sinωx(ω>0)的图象在y轴右边的对称轴与其交点从左向右依次记为在点列A1、A2、A3、…、An、…在点列{An}中存在不同三点Ak、Ai、Ap,使得△AkAiAp是等腰直角三角形,将满足上述条件的ω值从小到大组成的数列记为{ωn}.则ω2016=$\frac{4031π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个几何体的三视图如图所示,该几何体的表面积为(  )
A.8+$\sqrt{3}$B.10+$\sqrt{3}$C.8+$\sqrt{3}$+$\sqrt{7}$D.10+$\sqrt{3}$+$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.要从n名学生组成的小组中任意选派3人去参加社会实践活动,若在男生甲被选中的情况下,女生乙也被选中的概率为0.25,则n的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案