| A. | -$\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | -$\frac{3\sqrt{2}}{5}$ | D. | -$\frac{4\sqrt{2}}{5}$ |
分析 由三角函数图象的对称性可得ω,逐步代点可得解析式,再由二倍角公式和弦化切的思想可得.
解答 解:由三角函数图象的对称性可得直线y=-1与图象C左边的交点横坐标为$\frac{3π}{8}$+($\frac{3π}{8}$-$\frac{π}{4}$)=$\frac{π}{2}$,
∴函数图象y轴右侧的第一个最低点的横坐标为x=$\frac{1}{2}$($\frac{π}{2}$+$\frac{3π}{4}$)=$\frac{5π}{8}$,
∴函数的周期T=$\frac{2π}{ω}$=4($\frac{5π}{8}$-$\frac{3π}{8}$),解得ω=2,∴f(x)=Asin(2x+φ),
代入点($\frac{3π}{8}$,0)可得0=Asin($\frac{3π}{4}$+φ),∴$\frac{3π}{4}$+φ=kπ,k∈Z,
结合|φ|<$\frac{π}{2}$可得,φ=$\frac{π}{4}$,故f(x)=Asin(2x+$\frac{π}{4}$),
在由图象过点($\frac{π}{4}$,1)可得Asin(2•$\frac{π}{4}$+$\frac{π}{4}$)=1,解得A=$\sqrt{2}$,
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),∴f($α+\frac{π}{8}$)=$\sqrt{2}$sin(2α+$\frac{π}{4}$+$\frac{π}{4}$)
=$\sqrt{2}$sin(2α+$\frac{π}{2}$)=$\sqrt{2}$cos2α=$\sqrt{2}$(cos2α-sin2α)
=$\sqrt{2}$•$\frac{co{s}^{2}α-si{n}^{2}α}{co{s}^{2}α+si{n}^{2}α}$=$\sqrt{2}$•$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\sqrt{2}$•$\frac{1-{3}^{2}}{1+{3}^{2}}$=-$\frac{4\sqrt{2}}{5}$,
故选:D.
点评 本题考查三角函数的图象和解析式,涉及二倍角公式和弦化切的思想,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com