精英家教网 > 高中数学 > 题目详情

(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2).

(Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程;
(Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.

(1) (x-1)2+(y-1)2="2" (2)

解析试题分析:解: (Ⅰ)设P(r,q)为圆上任意一点,则|OP|=r,ÐPOx=q
RtDPOB中,cos(q)=,即r=2cos(q).
r2=2rcosq×+2rsinq×
∴圆C的直角坐标方程为(x-1)2+(y-1)2=2.                      ……5分
(Ⅱ)作CD^MNDC到直线l的距离为d
RtDCDA中,|MN|=2
S××.                               ……10分
考点:本试题主要是对于坐标系与参数方程的考查。
点评:熟练掌握极坐标与直角坐标的互化,同时能利用直线与圆的位置关系,利用圆的半径,点到直线的距离公式以及弦长的关系来求解,并结合三角形正弦面积公式得到,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

几何证明选讲如图:已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点

证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,过点B作⊙O的切线BCOC交⊙O于点EAE的延长线交BC于点D

(1)求证:CE2 = CD · CB
(2)若AB = BC = 2,求CECD的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知圆和定点,由圆外一点向圆引切线,切点为,且满足.

(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.

(1)求证:DE是⊙O的切线;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-1几何证明选讲
如图,AB是O的直径,BE为圆0的切线,点c为o 上不同于A、B的一点,AD为的平分线,且分别与BC 交于H,与O交于D,与BE交于E,连结BD、CD.

(I )求证:BD平分
(II)求证:AH•BH=AE•HC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的两条平行弦,、交圆于,过点的切线交的延长线于

(1)求的长;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4-1:几何证明选讲
如图所示,圆的直径为圆周上一点,,过作圆的切线,过的垂线,垂足为,求∠DAC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

△ABC中,AB=,AC边上的中线BD=,cosB=,如图所示,
求:sinA。

查看答案和解析>>

同步练习册答案