精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知圆和定点,由圆外一点向圆引切线,切点为,且满足.

(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。

(1);(2);(3)

解析试题分析:(1)连结,为切点,,由勾股定理得  
,即
化简得
(2),所以求面积的最小值转化为求的最小值。
法一:
,当时,
所以面积的最小值为
法二:点在直线

即求点到直线的距离
所以面积的最小值为
(3)设关于直线的对称点为
,解得

的最大值为
考点:本题考查了直线与圆的位置关系及直线的对称性
点评:对称问题的核心是点关于点的中心对称和点关于直线的轴对称,要充分利用转化的思想将问题转化为这两类对称中的一种加以处理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,⊙的半径为3,两条弦交于点,且
求证:△≌△

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,BA是圆O的直径,延长BA至E,使得AE=AO,过E点作圆O的割线交圆O于D、E,使AD=DC,

求证:;
若ED=2,求圆O的内接四边形ABCD的周长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O
的割线PAB,交⊙O于A、B两点,与ST交于点C,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,在中,平分于点,点上,
(I)求证:的外接圆的切线;
(II)若,求的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MNAD的延长线于点C,交⊙O的切线于B,BMMNNC=1,求AB的长和⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
在极坐标系中,已知两点O(0,0),B(2).

(Ⅰ)求以OB为直径的圆C的极坐标方程,然后化成直角坐标方程;
(Ⅱ)以极点O为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线l的参数方程为t为参数).若直线l与圆C相交于M,N两点,圆C的圆心为C,求DMNC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)选修4—1:几何证明选讲已知中,
垂足为D,,垂足为F,,垂足为E.

求证:(Ⅰ)
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A. 选修4-1:几何证明选讲
(本小题满分10分)
如图,与⊙相切于点的中点,
过点引割线交⊙两点,
求证:

查看答案和解析>>

同步练习册答案