分析 (1)求出双曲线的渐近线方程,由题意可得b=$\frac{\sqrt{5}}{5}$a,由a,b,c的关系和离心率公式,计算即可得到所求值;
(2)根据过双曲线E的右焦点且斜率为1的直线,写出直线的方程,联立直线与双曲线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,及A,B,C为双曲线上的点,注意整体代换,并代足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+$\overrightarrow{OB}$,即可求得λ的值.
解答 解:(1)双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由斜率为$\frac{\sqrt{5}}{5}$的直线与其一条渐近线平行,可得
$\frac{b}{a}$=$\frac{\sqrt{5}}{5}$,即b=$\frac{\sqrt{5}}{5}$a,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\frac{\sqrt{30}}{5}$a,
可得e=$\frac{c}{a}$=$\frac{\sqrt{30}}{5}$;
(2)由(1)可得双曲线的方程为x2-5y2=5b2,
联立$\left\{\begin{array}{l}{{x}^{2}-5{y}^{2}=5{b}^{2}}\\{y=x-c}\end{array}\right.$,得4x2-10cx+35b2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=$\frac{5}{2}$c,x1•x2=$\frac{35{b}^{2}}{4}$,
设$\overrightarrow{OC}$=(x3,y3),$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+$\overrightarrow{OB}$,
即$\left\{\begin{array}{l}{{x}_{3}=λ{x}_{1}+{x}_{2}}\\{{y}_{3}=λ{y}_{1}+{y}_{2}}\end{array}\right.$,
又C为双曲线上一点,即x32-5y32=5b2,
有(λx1+x2)2-5(λy1+y2)2=5b2,
化简得:λ2(x12-5y12)+(x22-5y22)+2λ(x1x2-5y1y2)=5b2,
又A(x1,y1),B(x2,y2)在双曲线上,
所以x12-5y12=5b2,x22-5y22=5b2,
而x1x2-5y1y2=x1x2-5(x1-c)(x2-c)
=-4x1x2+5c(x1+x2)-5c2=-4•$\frac{35{b}^{2}}{4}$+5c•$\frac{5c}{2}$-5c2
=$\frac{15{c}^{2}}{2}$-35b2=$\frac{15}{2}$•6b2-35b2=10b2,
得λ2+4λ=0,
解得λ=0或-4.
点评 此题是个难题.本题考查了双曲线的标准方程及其简单的几何性质、直线与圆锥曲线的位置关系,是一道综合性的试题,考查了学生综合运用知识解决问题的能力.其中问题(2)考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{y^2}{20}-\frac{x^2}{5}=1$ | B. | $\frac{y^2}{5}-\frac{x^2}{20}=1$ | C. | $\frac{y^2}{100}-\frac{x^2}{25}=1$ | D. | $\frac{y^2}{25}-\frac{x^2}{100}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+\sqrt{5}}{2}$ | B. | $\frac{1+\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com