精英家教网 > 高中数学 > 题目详情
18.若直线l:y=kx+m与双曲线$\frac{{x}^{2}}{4}$-y2=1交于E、F(不重合左右顶点),且EF为直径的圆过双曲线的右顶点D.证明:直线l过定点.

分析 设E(x1,y1),F(x2,y2) 联立y=kx+m与双曲线$\frac{{x}^{2}}{4}$-y2=1,得(4k2-1)x2+8kmx+4(m2+1)=0,由△=(8km)2-4(4m2+4)(4k2-1)>0,由此利用根的判别式、韦达定理结合已知条件能证明直线l的方程为y=k(x-$\frac{10}{3}$),过定点($\frac{10}{3}$,0).

解答 证明:设E(x1,y1),F(x2,y2),
联立y=kx+m与双曲线$\frac{{x}^{2}}{4}$-y2=1,
得(4k2-1)x2+8kmx+4(m2+1)=0,
△=(8km)2-4(4m2+4)(4k2-1)>0,
即4k2-m2-1<0.
则$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-\frac{8km}{4{k}^{2}-1}}\\{{x}_{1}{x}_{2}=\frac{4{m}^{2}+4}{4{k}^{2}-1}}\end{array}\right.$,
又y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2
∵以EF为直径的圆过双曲线C的右顶点D(2,0)
∴$\overrightarrow{DE}$•$\overrightarrow{DF}$=0,即(x1-2,y1)•(x2-2,y2)=0,
即有(1+k2)x1x2+(km-2)(x1+x2)+m2+4=0,
∴(k2+1)•$\frac{4{m}^{2}+4}{4{k}^{2}-1}$+(km-2)•$\frac{-8km}{4{k}^{2}-1}$+m2+4=0,
化简,得3m2+16km+20k2=0,
∴m1=-2k,m2=-$\frac{10}{3}$,且均满足4k2-m2-1<0,
当m1=-2k时,直线l的方程为y=k(x-2),
直线过定点(2,0),与已知矛盾.
当m2=-$\frac{10}{3}$k时,直线l的方程为y=k(x-$\frac{10}{3}$),
过定点($\frac{10}{3}$,0).

点评 本题考查双曲线的方程的运用和直线l过定点的求法,解题时要认真审题,注意挖掘题设中的隐含条件,联立方程运用韦达定理,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$e=\sqrt{3}$,则它的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知M(x0,y0)是双曲线C:x2-y2=1上的一点,F1,F2是C上的两个焦点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,则x0的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,则该双曲线的离心率e的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的斜率为2,且右焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点F($\sqrt{5}$,0)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且点F到双曲线的渐近线的距离等于2,则过点F且与此双曲线只有一个交点的直线方程为y=2x-2$\sqrt{5}$或y=-2x+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0),其中斜率为$\frac{\sqrt{5}}{5}$的直线与其一条渐近线平行.
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A、B两点,O为坐标原点,C为双曲线上一点,满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+$\overrightarrow{OB}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线$C:\frac{x^2}{4}-\frac{y^2}{5}=1$的左焦点为F,P为双曲线C右支上的动点,A(0,4),则△PAF周长的最小值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设$α∈\{-2,-1,-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2,3\}$,则使幂函数f(x)=xα为偶函数,且在(0,+∞)是减函数的α值是-2.(写出所有符合条件的α值)

查看答案和解析>>

同步练习册答案