精英家教网 > 高中数学 > 题目详情
13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的斜率为2,且右焦点与抛物线y2=4$\sqrt{5}$x的焦点重合,则该双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

分析 求出双曲线的渐近线方程,可得b=2a,再由抛物线的焦点可得c=$\sqrt{5}$,即a2+b2=5,解得a=1,由离心率公式计算即可得到所求值.

解答 解:双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=2,
抛物线y2=4$\sqrt{5}$x的焦点为($\sqrt{5}$,0),
即有c=$\sqrt{5}$,即a2+b2=5,
解得a=1,b=2,
离心率e=$\frac{c}{a}$=$\sqrt{5}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和抛物线的焦点,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知双曲线E的左,右顶点为A,B,点C在E上,AB=BC,且∠BCA=30°,则E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点为F,若点F关于双曲线的渐近线的对称点在双曲线的右支上,则该双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的焦距为$10\sqrt{5}$,点P(1,2)在双曲线C的渐近线上,则双曲线C的方程为(  )
A.$\frac{y^2}{20}-\frac{x^2}{5}=1$B.$\frac{y^2}{5}-\frac{x^2}{20}=1$C.$\frac{y^2}{100}-\frac{x^2}{25}=1$D.$\frac{y^2}{25}-\frac{x^2}{100}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的左、右焦点分别是F1、F2,过F2的直线交双曲线的右支于P、Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{10}{3}$C.2D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若直线l:y=kx+m与双曲线$\frac{{x}^{2}}{4}$-y2=1交于E、F(不重合左右顶点),且EF为直径的圆过双曲线的右顶点D.证明:直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点A是双曲线右支上一点,∠AF2F1=$\frac{2π}{3}$,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{1+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{{n+8•{{(-1)}^{n+1}}}}{n}$对任意的n∈N+恒成立,则实数λ的最大值为-15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义某种运算M=a?b,运算原理如图所示,则式子$(2tan\frac{π}{4})?sin\frac{π}{2}+(4cos\frac{π}{3})?{(\frac{1}{3})^{-1}}$的值为(  )
A.4B.8C.11D.13

查看答案和解析>>

同步练习册答案