| A. | $\frac{4}{3}$ | B. | $\frac{10}{3}$ | C. | 2 | D. | $\frac{7}{5}$ |
分析 设出双曲线的焦点,运用双曲线的定义求得|PF2|=|PF1|-2a=2c-2a,结合条件可得|QF1|=|QF2|+2a=3c-a,在△PF1F2和△QF1F2中,分别运用余弦定理以及∠F1F2Q+∠F1F2P=π,得cos∠F1F2Q+cos∠F1F2P=0,化简整理,由离心率公式计算即可得.
解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),
则|PF1|=|F1F2|=2c,
由双曲线的定义可得|PF2|=|PF1|-2a=2c-2a,
由3|PF2|=2|QF2|,
可得|QF2|=3c-3a,
由双曲线的定义可得|QF1|=|QF2|+2a=3c-a,
在△PF1F2和△QF1F2中,
cos∠F1F2P=$\frac{|{F}_{1}{F}_{2}{|}^{2}+|P{F}_{2}{|}^{2}-|P{F}_{1}{|}^{2}}{2|{F}_{1}{F}_{2}|•|P{F}_{2}|}$=$\frac{4{c}^{2}+4(c-a)^{2}-4{c}^{2}}{2•2c•2(c-a)}$
=$\frac{c-a}{2c}$,
cos∠F1F2Q=$\frac{|{F}_{1}{F}_{2}{|}^{2}+|Q{F}_{2}{|}^{2}-|Q{F}_{1}{|}^{2}}{2|{F}_{1}{F}_{2}|•|Q{F}_{2}|}$=$\frac{4{c}^{2}+9(c-a)^{2}-(3c-a)^{2}}{2•2c•3(c-a)}$
=$\frac{c-2a}{3c}$,
由∠F1F2Q+∠F1F2P=π,可得cos∠F1F2Q+cos∠F1F2P=0,
即有$\frac{c-a}{2c}$+$\frac{c-2a}{3c}$=0,即有5c=7a,
即有e=$\frac{c}{a}$=$\frac{7}{5}$.
故选:D.
点评 本题考查双曲线的定义、方程和性质,主要考查离心率的求法,运用双曲线的定义和余弦定理是解题的关键,属于中档题和易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | 2 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 0 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com