精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r-1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6
(3)若数列{an}为“6关联数列”,当n≥6时,在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,求dn,并探究在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

分析 (1)若数列{an}为“6关联数列”,{an}前6项为等差数列,从第5项起为等比数列,可得a6=a1+5,a5=a1+4,且$\frac{{a}_{6}}{{a}_{5}}$=2,解得a1,即可求数列{an}的通项公式.
(2)由(1)得${S}_{n}=\left\{\begin{array}{l}{\frac{1}{2}{n}^{2}-\frac{7}{2}n,n≤4}\\{{2}^{n-4}-7,n≥5}\end{array}\right.$,可见数列{anSn}的最小项为a6S6=-6,即可证明:对任意n∈N*,anSn≥a6S6
(3)由(1)知,当n≥6时,${a}_{n}={2}^{n-5}$,由此能求出${d}_{n}=\frac{{2}^{n-5}}{n+1}$.假设在数列{dn}中存在dm,dk,dp(其中m,k,p成等差数列),则(dk2=dmdp,推导出k=m=p,这与题设矛盾.故在数列{dn}中不存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列.

解答 解:(1)∵数列{an}为“6关联数列”,
∴{an}前6项为等差数列,从第5项起为等比数列,
∴a6=a1+5,a5=a1+4,且$\frac{{a}_{6}}{{a}_{5}}$=$\frac{{a}_{1}+5}{{a}_{1}+4}$=2,解得a1=-3,
∴${a}_{n}=\left\{\begin{array}{l}{n-4,n≤4}\\{{2}^{n-5},n≥5}\end{array}\right.$.
(2)由(1)得${S}_{n}=\left\{\begin{array}{l}{\frac{1}{2}{n}^{2}-\frac{7}{2}n,n≤4}\\{{2}^{n-4}-7,n≥5}\end{array}\right.$,
{an}:-3,-2,-1,0,1,2,22,23,24,25,…,
{Sn}:-3,-5,-6,-6,-5,-3,1,9,25,…
{anSn}:9,10,6,0,-5,-6,4,72,400,…,
可见数列{anSn}的最小项为a6S6=-6,
证明:anSn=$\left\{\begin{array}{l}{\frac{1}{2}n(n-4)(n-7),n≤5}\\{{2}^{n-5}({2}^{n-4}-7),n≥6}\end{array}\right.$,
列举法知当n≤5时,(anSnmin=a5S5=-5;
当n≥6时,anSn=2•(2n-52-7•2n-5,n≥6,
设t=2n-5,则anSn=2t2-7t=2(t-$\frac{7}{4}$)2-7t=2(t-$\frac{7}{4}$)2-$\frac{49}{8}$≥2•22-7•2=-6.
(3)由(1)知,当n≥6时,${a}_{n}={2}^{n-5}$,
∵an+1=an+(n+2-1)dn
2n-4=2n-5+(n+1)dn,∴${d}_{n}=\frac{{2}^{n-5}}{n+1}$.
假设在数列{dn}中存在dm,dk,dp(其中m,k,p成等差数列),
则(dk2=dmdp
∴($\frac{{2}^{k-5}}{k+1}$)2=$\frac{{2}^{m-5}}{m+1}•\frac{{2}^{p-5}}{p+1}$,$\frac{{2}^{2k-10}}{(k+1)^{2}}=\frac{{2}^{m+p-10}}{(m+1)(p+1)}$,(*)
∵m,p,k成等差数列,∴m+p=2k,(*)式可化简为(k+1)2=(m+1)(p+1),
即k2=mp,∴k=m=p,这与题设矛盾.
∴在数列{dn}中不存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列.

点评 本题考查数列的通项公式的求法,考查不等式的证明,考查满足条件的三项是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若对于任意x∈R,都有f(x)≥k-g(x)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知双曲线的左、右焦点分别是F1、F2,过F2的直线交双曲线的右支于P、Q两点,若|PF1|=|F1F2|,且3|PF2|=2|QF2|,则该双曲线的离心率为(  )
A.$\frac{4}{3}$B.$\frac{10}{3}$C.2D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点A是双曲线右支上一点,∠AF2F1=$\frac{2π}{3}$,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{1+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.双曲线${y^2}-\frac{x^2}{m}=1$的离心率e∈(1,2),则m的取值范围是(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{{n+8•{{(-1)}^{n+1}}}}{n}$对任意的n∈N+恒成立,则实数λ的最大值为-15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线2x2-y2=1的渐近线方程是(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线C2:$\frac{{y}^{2}}{{b}^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,则关于双曲线C1与C2的命题.
①渐近线相同;
②焦点相同;
③离心率e1,e2满足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④两个双曲线焦点在同一圆上,
其中所有正确的命题序号为(  )
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图AC1是棱长为2的正方体,M为B1C1的中点,给出下列命题:
①AB1与BC1成60°角;
②若$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{N{C}_{1}}$,面A1MN交CD于E,则CE=$\frac{1}{3}$;
③P点在正方形ABB1A1边界及内部运动,且MP⊥DB1,则P点轨迹长等于$\sqrt{2}$;
④E,F分别在DB1和A1C1上,且$\frac{DE}{E{B}_{1}}$=$\frac{{A}_{1}F}{F{C}_{1}}$=2,直线EF与AD1,A1D所成角分别是α,β,则α+β=$\frac{π}{2}$.
其中正确的命题有①③④.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案