精英家教网 > 高中数学 > 题目详情
12.双曲线${y^2}-\frac{x^2}{m}=1$的离心率e∈(1,2),则m的取值范围是(0,3).

分析 求得双曲线的a,b,c,e,解不等式即可得到所求m的范围.

解答 解:双曲线${y^2}-\frac{x^2}{m}=1$(m>0),
可得a=1,b=$\sqrt{m}$,c=$\sqrt{1+m}$,
即有e=$\frac{c}{a}$=$\sqrt{1+m}$∈(1,2),
解得0<m<3.
故答案为:(0,3).

点评 本题考查双曲线的参数的范围,注意运用双曲线的离心率公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.双曲线3x2-y2=1的渐近线方程是(  )
A.y=±3xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}$xD.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线x2-y2=1的离心率是(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{5}$=1,直线l与双曲线相交于M、N两点,MN的中点为(-$\frac{2}{3}$,-$\frac{5}{3}$),则直线l的方程是y=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)的定义域为(0,+∞),若$y=\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”.
(1)若f(x)=ax2+ax是“一阶比增函数”,求实数a的取值范围;
(2)若f(x)是“一阶比增函数”,求证:对任意x1,x2∈(0,+∞),总有f(x1)+f(x2)<f(x1+x2);
(3)若f(x)是“一阶比增函数”,且f(x)有零点,求证:关于x的不等式f(x)>2015有解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r-1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6
(3)若数列{an}为“6关联数列”,当n≥6时,在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,求dn,并探究在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{2x,(x≤\frac{1}{2})}\\{2-2x,(x>\frac{1}{2})}\end{array}\right.$,则函数$\underset{\underbrace{f(f(…f(x)…))}}{2015}$在[0,1]上的图象总长(  )
A.8060B.4030C.2015$\sqrt{5}$D.$\sqrt{{2^{4030}}+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,其中D在线段OB上.连结EC,CD.
(Ⅰ)证明:直线AB是圆O的切线;
(Ⅱ)若tan∠CED=$\frac{1}{2}$,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在数列{an}中,a1=1,且对于任意自然数n,都有an+1=an+n,则a6=16.

查看答案和解析>>

同步练习册答案