精英家教网 > 高中数学 > 题目详情
20.双曲线${x^2}-\frac{y^2}{3}=1$的焦点到渐近线的距离等于$\sqrt{3}$.

分析 求出双曲线的a,b,c,渐近线方程,运用点到直线的距离公式计算可得所求距离.

解答 解:双曲线${x^2}-\frac{y^2}{3}=1$的a=1,b=$\sqrt{3}$,
c=$\sqrt{{a}^{2}+{b}^{2}}$=2,
渐近线方程为y=±$\sqrt{3}$x,
可得焦点(2,0)到渐近线的距离为d=$\frac{2\sqrt{3}}{\sqrt{1+3}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查双曲线的焦点到渐近线的距离的求法,注意运用点到直线的距离公式,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设α、β、γ∈(0,$\frac{π}{2}$)且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,求证:α+β+γ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据已知向量$\overrightarrow{a}$、$\overrightarrow{b}$,求作$\overrightarrow{a}$+$\overrightarrow{b}$、$\overrightarrow{a}$-$\overrightarrow{b}$.
(1
(2
(3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的离心率为$e=\sqrt{3}$,则它的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与双曲线x2-y2=1有相同渐近线且过($\sqrt{3}$,1)的双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$B.$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{2}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}=1$D.$\frac{{y}^{2}}{4}-\frac{{x}^{2}}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点重合,点M是抛物线与双曲线的一个交点,若MF⊥x轴,则该双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点是F(-c,0),斜率为2的直线l过点P并与两条渐近线交于A,B两点(A,B位于x轴同侧),且S△BOF=4S△AOF,则双曲线的离心率是(  )
A.$\frac{\sqrt{109}}{3}$B.$\frac{10}{3}$C.3D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知M(x0,y0)是双曲线C:x2-y2=1上的一点,F1,F2是C上的两个焦点,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,则x0的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0),其中斜率为$\frac{\sqrt{5}}{5}$的直线与其一条渐近线平行.
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A、B两点,O为坐标原点,C为双曲线上一点,满足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+$\overrightarrow{OB}$,求λ的值.

查看答案和解析>>

同步练习册答案