精英家教网 > 高中数学 > 题目详情
12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点是F(-c,0),斜率为2的直线l过点P并与两条渐近线交于A,B两点(A,B位于x轴同侧),且S△BOF=4S△AOF,则双曲线的离心率是(  )
A.$\frac{\sqrt{109}}{3}$B.$\frac{10}{3}$C.3D.$\frac{4}{3}$

分析 设直线l的方程为y=2(x+c),求得渐近线方程,求得交点A,B,再由同高不同底的三角形的面积之比为底边之比,
可得BF=4AF,即有$\overrightarrow{BF}$=4$\overrightarrow{AF}$,运用向量共线的坐标表示,结合离心率公式计算即可得到所求值.

解答 解:设直线l的方程为y=2(x+c),
联立双曲线的渐近线方程y=±$\frac{b}{a}$x,
解得A($\frac{2ac}{-b-2a}$,$\frac{-2bc}{-b-2a}$),B($\frac{2ac}{b-2a}$,$\frac{2bc}{b-2a}$),
由S△BOF=4S△AOF
结合同高不同底的三角形的面积之比为底边之比,
可得BF=4AF,即有$\overrightarrow{BF}$=4$\overrightarrow{AF}$,
可得-c-$\frac{2ac}{b-2a}$=4(-c-$\frac{2ac}{-b-2a}$),
化简可得3b=10a,可得b=$\frac{10}{3}$a,
即有c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{{a}^{2}+\frac{100}{9}{a}^{2}}$=$\frac{\sqrt{109}}{3}$a,
则e=$\frac{c}{a}$=$\frac{\sqrt{109}}{3}$,
故选:A.

点评 本题考查双曲线的离心率的求法,主要考查渐近线方程的运用,同时考查三角形的面积之比为底边之比和向量共线的坐标表示,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在以O为中心,F1,F2为焦点的双曲线上存在一点M,满足|$\overrightarrow{M{F}_{1}}$|=2|$\overrightarrow{MO}$|=2|$\overrightarrow{M{F}_{2}}$|,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线E的左,右顶点为A,B,点C在E上,AB=BC,且∠BCA=30°,则E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线${x^2}-\frac{y^2}{3}=1$的焦点到渐近线的距离等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若对于任意x∈R,都有f(x)≥k-g(x)恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.经过点A(1,1),且与直线l:3x-2y+1=0平行的直线方程为3x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点为F,若点F关于双曲线的渐近线的对称点在双曲线的右支上,则该双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的焦距为$10\sqrt{5}$,点P(1,2)在双曲线C的渐近线上,则双曲线C的方程为(  )
A.$\frac{y^2}{20}-\frac{x^2}{5}=1$B.$\frac{y^2}{5}-\frac{x^2}{20}=1$C.$\frac{y^2}{100}-\frac{x^2}{25}=1$D.$\frac{y^2}{25}-\frac{x^2}{100}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{{n+8•{{(-1)}^{n+1}}}}{n}$对任意的n∈N+恒成立,则实数λ的最大值为-15.

查看答案和解析>>

同步练习册答案