分析 利用两角和的正切公式,求得tan(α+γ)=$\frac{2}{3}$,可得α+γ为锐角,再求得tan[(α+γ)+β]=1,可得结论成立.
解答 解:∵α、β、γ∈(0,$\frac{π}{2}$)且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,∴tan(α+γ)=$\frac{tanα+tanγ}{1-tanαtanγ}$=$\frac{2}{3}$>0,∴α+γ为锐角.
∵tan[(α+γ)+β]=$\frac{tan(α+γ)+tanβ}{1-tan(α+γ)tanβ}$=$\frac{\frac{2}{3}+\frac{1}{5}}{1-\frac{2}{3}•\frac{1}{5}}$=1,∴α+β+γ=$\frac{π}{4}$.
点评 本题主要考查两角和的正切公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 必要非充分条件 | B. | 充要条件 | ||
| C. | 充分非必要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com