精英家教网 > 高中数学 > 题目详情
12.已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈R使得f(x1)≤g(x2)成立,求实数a的取值范围.

分析 分别根据导数和二次函数的性质求出其最小值和最大值得到关于a的不等式,解出即可

解答 解:f'(x)=ex+xex=(1+x)ex
当x>-1时,f'(x)>0,函数递增;
当x<-1时,f'(x)<0,函数递减,
所以当x=-1时,f(x)取得极小值即最小值 $f({-1})=-\frac{1}{e}$.
函数 g(x)的最大值为a,若?x1,x2∈R使得f(x1)≤g(x2)成立.
则有g(x)的最大值大于等于f(x)的最小值,
即a≥-$\frac{1}{e}$,
故实数a的取值范围为[-$\frac{1}{e}$,+∞)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题、属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xe-x(x∈R),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线ax+y+2=0及两点P(-2,1)、Q(3,2),若直线与线段PQ相交,则a的取值范围是(  )
A.-$\frac{3}{2}$≤a≤$\frac{4}{3}$B.a≤-$\frac{3}{2}$,或a≥$\frac{4}{3}$C.a≤0,或a≥$\frac{1}{3}$D.a≤-$\frac{4}{3}$,或a≥$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是公差为-2的等差数列,a6是a1+2与a3的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{an+2n}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$,且$\overrightarrow{c}$•$\overrightarrow{a}$=0,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-ex+1,a∈R.
(1)求f(x)的单调区间;
(2)若f(x)≤0在x∈R上恒成立,求实数a的取值集合;
(3)当a=1时,对任意的0<m<n,求证:$\frac{1}{n}$-1<$\frac{f(lnn)-f(lnm)}{n-m}$<$\frac{1}{m}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinx-2x-a,若f(x)在[0,π]上的最大值为-1,则实数a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx+x2-3x-m.
(1)当m=0时,求函数f(x)的极小值;
(2)若函数f(x)在区间(m+$\frac{1}{4}$,1)上是单调函数,求实数m取值范围;
(3)若函数y=2x-lnx(x∈[1,4])的图象总在函数y=f(x)图象的上方,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)=x3-3x在[a,6-a2)上有最小值,则实数a的取值范围是(  )
A.(-$\sqrt{5}$,1)B.[-$\sqrt{5}$,1)C.[-2,1)D.(-$\sqrt{5}$,-2]

查看答案和解析>>

同步练习册答案