精英家教网 > 高中数学 > 题目详情
7.如果命题p(n)对n=k成立,则它对n=k+2也成立,若p(n)对n=2成立,则下列结论正确的是(  )
A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立
C.p(n)对大于或等于2的正整数n都成立D.p(n)对所有自然数都成立

分析 根据题意,当命题P(2)成立时,可推出 P(4)、P(6)、P(8)、P(10)、P(12)、…均成立,由此可得出结论.

解答 解:由于命题P(n)对n=k成立,则它对n=k+2也成立;
又已知命题P(2)成立,
可推出P(4)、P(6)、P(8)、P(10)、P(12)、…,均成立,
即p(n)对所有正偶数n都成立.
故选:B.

点评 本题考查了用数学归纳法证明数学命题,注意n只能取连续的正偶数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数y=x3-3bx+1在区间(1,2)内是减函数,b∈R,则(  )
A.b≤4B.b<4C.b≥4D.b>4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列$\frac{1^2}{1×3}$,$\frac{2^2}{3×5}$,$\frac{3^2}{5×7}$,…,$\frac{n^2}{(2n-1)×(2n+1)}$,…Sn为其前n项和,计算得S1=$\frac{1}{3}$,S2=$\frac{3}{5}$,S3=$\frac{6}{7}$,S4}=$\frac{10}{9}$.观察上述结果,归纳计算Sn=$\frac{n(n+1)}{2(2n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆O的半径为1,PA,PB为该圆的两条切线,A,B为两切点,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值(  )
A.2$\sqrt{2}$-3B.2$\sqrt{2}$-1C.2$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x4cosx+mx2+x(m∈R),若其导函数f′(x)在区间[-2,2]上有最大值为9,则导函数f′(x)在区间[-2,2]上的最小值为(  )
A.-5B.-7C.-9D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{3}+{y^2}$=1,斜率为1的直线l与椭圆C交于A,B两点,且|AB|=$\frac{{3\sqrt{2}}}{2}$,则直线l的方程为y=x±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1(-1,0),F2(1,0),且△PF1F2的周长为6.
(Ⅰ)求动点P轨迹C的方程;
(Ⅱ)若不过原点的直线l:y=kx+m与曲线C交于两个不同的点A、B,M为AB的中点,且M到F2的距离等于到直线x=-1的距离,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:选择题

曲线在点处的切线方程为( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案