精英家教网 > 高中数学 > 题目详情
19.已知椭圆C:$\frac{x^2}{3}+{y^2}$=1,斜率为1的直线l与椭圆C交于A,B两点,且|AB|=$\frac{{3\sqrt{2}}}{2}$,则直线l的方程为y=x±1.

分析 设出直线方程y=x+m,代入x2+3y2=3,结合题设条件利用椭圆的弦长公式能求出m,得到直线方程.

解答 解:椭圆:$\frac{x^2}{3}+{y^2}$=1,即:x2+3y2=3
l:y=x+m,代入x2+3y2=3,
整理得4x2+6mx+3m2-3=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{6m}{4}$,x1x2=$\frac{3{m}^{2}-3}{4}$,
|AB|=$\sqrt{1+{1}^{2}}$•|x1-x2|
=$\sqrt{2}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}×\sqrt{(-\frac{6m}{4})^{2}-4×\frac{3{m}^{2}-3}{4}}$=$\frac{{3\sqrt{2}}}{2}$,.
解得:m=±1.
直线l:y=x±1.
故答案为:y=x±1.

点评 本题考查椭圆弦长的求法,解题时要注意弦长公式,考查计算能力以及分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直角坐标系中x轴正方向是极坐标系的极轴,坐标原点为极点,若曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),曲线C2:ρ=sinα.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程.
(2)已知直线l:x+y-8=0,求曲线C1上的点到直线l的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为:$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-1+\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$
(1)若P(1,-1),l上一点Q对应的参数值t=-2,求Q的坐标和|PQ|的值;
(2)l与圆x2+y2=4交于M、N,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果命题p(n)对n=k成立,则它对n=k+2也成立,若p(n)对n=2成立,则下列结论正确的是(  )
A.p(n)对所有正整数n都成立B.p(n)对所有正偶数n都成立
C.p(n)对大于或等于2的正整数n都成立D.p(n)对所有自然数都成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,A是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C交于另一点B,若△AF1B的面积是8,则椭圆C的方程是$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{lnx}{x}$.
(1)求函数f(x)的单调区间,并比较3n与π3的大小;
(2)若正实数a满足对任意x∈(0,+∞)都有ax2f(x)+1≥0,求正实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某3D打印机,其打出的产品质量按照百分制衡量,若得分不低于85分则为合格品,低于85分则为不合格品,商家用该打印机随机打印了15件产品,得分情况如图;
(1)写出该组数据的中位数和众数,并估计该打印机打出的产品为合格品的概率;
(2)若打印一件合格品可获利54元,打印一件不合格品则亏损18元,记X为打印3件产品商家所获得的利润,在(1)的前提下,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn3}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要条件为$\left\{{\begin{array}{l}{{a_n}=\frac{1}{{1+{d_n}^6}}}\\{{b_n}=\frac{{{d_n}^3}}{{1+{d_n}^6}}}\end{array}}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2}+{{(-1)}^n}θ)}}$,试计算bn

查看答案和解析>>

科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(理)试卷(解析版) 题型:解答题

已知,若的充分而不必要条件,求实数的取值范围.

查看答案和解析>>

同步练习册答案