分析 (1)曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),消去参数,可得普通方程,根据x=ρcosθ,y=ρsinθ,将曲线C2的极坐标方程化为直角坐标方程即可;
(2)曲线C1上的点到直线l的距离d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+α)-8|}{\sqrt{2}}$,即可求曲线C1上的点到直线l的最短距离.
解答 解:(1)曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),消去参数,可得普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
曲线C2:ρ=sinθ,即:ρ2=ρsinθ,直角坐标方程为x2+y2-y=0.
(2)曲线C1上的点到直线l的距离d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+α)-8|}{\sqrt{2}}$,
∴曲线C1上的点到直线l的最短距离为$\frac{8-\sqrt{7}}{\sqrt{2}}$=4$\sqrt{2}$-$\frac{\sqrt{14}}{2}$.
点评 本题主要考查了极坐标方程、参数方程及直角坐标方程之间的相互转化,考查了点到直线的距离的计算,考查了学生的运算求解能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-4,4] | B. | [-2$\sqrt{2}$,2$\sqrt{2}$] | C. | (-∞,4] | D. | (-∞,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 性别 科目 | 男 | 女 |
| 文科 | 2 | 5 |
| 理科 | 10 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com