精英家教网 > 高中数学 > 题目详情
9.已知直角坐标系中x轴正方向是极坐标系的极轴,坐标原点为极点,若曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),曲线C2:ρ=sinα.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程.
(2)已知直线l:x+y-8=0,求曲线C1上的点到直线l的最短距离.

分析 (1)曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),消去参数,可得普通方程,根据x=ρcosθ,y=ρsinθ,将曲线C2的极坐标方程化为直角坐标方程即可;
(2)曲线C1上的点到直线l的距离d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+α)-8|}{\sqrt{2}}$,即可求曲线C1上的点到直线l的最短距离.

解答 解:(1)曲线C1:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(θ为参数),消去参数,可得普通方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
曲线C2:ρ=sinθ,即:ρ2=ρsinθ,直角坐标方程为x2+y2-y=0.
(2)曲线C1上的点到直线l的距离d=$\frac{|2cosθ+\sqrt{3}sinθ-8|}{\sqrt{2}}$=$\frac{|\sqrt{7}sin(θ+α)-8|}{\sqrt{2}}$,
∴曲线C1上的点到直线l的最短距离为$\frac{8-\sqrt{7}}{\sqrt{2}}$=4$\sqrt{2}$-$\frac{\sqrt{14}}{2}$.

点评 本题主要考查了极坐标方程、参数方程及直角坐标方程之间的相互转化,考查了点到直线的距离的计算,考查了学生的运算求解能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=e2x-a•ex+2x是R上的增函数,则实数a的取值范围是(  )
A.[-4,4]B.[-2$\sqrt{2}$,2$\sqrt{2}$]C.(-∞,4]D.(-∞,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+ax(a∈R).
(Ⅰ)若函数f(x)在点(1,f(1))处的切线与直线y=2x平行,求实数a的值及该切线方程;
(Ⅱ)若对任意的x∈(0,+∞),都有f(x)≤1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的极坐标方程为ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy.
(1)若直线l过原点,且被曲线C截得的弦长最小,求直线l的直角坐标方程;
(2)若M是曲线C上的动点,且点M的直角坐标为(x,y),求x+y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高中采取分层抽样的方法从应届高二学生中按照性别抽出20名学生作为样本,其选报文科理科的情况如表所示.
  性别
科目
文科25
理科103
(1)画出列联表的等高条形图,并通过图形判断选报文理科与性别是否有关系;(须说明理由)
(2)用独立性检验的方法分析有多大的把握认为该中学的高三学生选报文理科与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)+1+a,(ω>0),任意相邻两个对称轴之间的距离为$\frac{π}{2}$,
(1)求ω的值并求函数f(x)的单调递增区间;
(2)若方程f(x)=0在$[0,\frac{3π}{4}]$上有两个不同的实根x1,x2,求a的取值范围和x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且过点A(0,1),
(1)求椭圆的方程;
(2)过点A作两条相互垂直的直线,分别交椭圆于点M,N(M,N不与点A重合).直线MN是否过定点?若过定点,则求出定点坐标;若不过定点,则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数y=x3-3bx+1在区间(1,2)内是减函数,b∈R,则(  )
A.b≤4B.b<4C.b≥4D.b>4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{3}+{y^2}$=1,斜率为1的直线l与椭圆C交于A,B两点,且|AB|=$\frac{{3\sqrt{2}}}{2}$,则直线l的方程为y=x±1.

查看答案和解析>>

同步练习册答案