分析 (1)求出函数的周期,即可求出ω的值,利用正弦函数的单调增区间求解函数f(x)的单调递增区间.
(2)求出函数的值域,利用函数零点与方程根的关系求解即可.
解答 解:(1)∵任意相邻两个对称轴之间的距离为$\frac{π}{2}$,
∴周期T=π,---------(1分)
∴$\frac{2π}{ω}=π$,即ω=2,----------------------(2分)
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2k$π+\frac{π}{2}$,(k∈Z)得:
k$π-\frac{π}{3}$≤x≤k$π+\frac{π}{6}$,(k∈Z).
所以f(x)的增区间为$[{kπ-\frac{π}{3},kπ+\frac{π}{6}}]$,k∈Z,------------(4分)
(2)∵x∈$[0,\frac{3π}{4}]$,∴$\frac{π}{6}$≤2x+$\frac{π}{6}$$≤\frac{5π}{3}$-------------------------(5分)
方程f(x)=0即2sin(2x+$\frac{π}{6}$)+1+a=0,2sin(2x+$\frac{π}{6}$)=-(1+a).
令y=2sin(2x+$\frac{π}{6}$),y=-(1+a).
方程f(x)=0的根的个数也即函数y=2sin(2x+$\frac{π}{6}$)与y=-(1+a).
图象交点的个数,
由图象(图象略)可知,方程有两个实根需满足1≤-(1+a)<2或-2$<-(1+a)≤-\sqrt{3}$,
所以,-3<a≤-2或$\sqrt{3}-1≤a<1$.
即 a的取值范围是$(-3,-2]∪[\sqrt{3}-1,1)$--------------(10分).
由图象(图象略)可知,x1+x2=$\frac{π}{6}×2=\frac{π}{3}$,或x1+x2=$\frac{2π}{3}×2=\frac{4π}{3}$.----(12分)
点评 本题考查三角函数的解析式的求法,函数的单调性以及函数的值域,函数的零点与方程根的关系,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y-4=0 | B. | x-y+2=0 | C. | x+y+4=0 | D. | x-y-2=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com