精英家教网 > 高中数学 > 题目详情
7.已知(4$\root{4}{\frac{1}{x}}$+$\root{3}{{x}^{2}}$)n展开式中的倒数第三项的二项式系数为45.
(1)求n;
(2)求含有x3的项;
(3)求二项式系数最大的项.

分析 (1)由条件利用二项式系数的性质求得n的值.
(2)先求出二项式展开式的通项公式,再令x的幂指数等于03,求得r的值,即可求得展开式中含有x3的项.
(3)此展开式共有11项,二项式系数最大的项是第6项,再利用通项公式得出结论.

解答 解 (1)由已知得${C}_{n}^{n-2}$=45,即${C}_{n}^{2}$=45,
∴n2-n-90=0,解得n=-9(舍)或n=10.
(2)由通项公式得:Tk+1=${C}_{10}^{r}$•410-r•${x}^{\frac{11r}{12}-\frac{5}{2}}$,令$\frac{11r}{12}$-$\frac{5}{2}$=3,求得r=6,
∴含有x3的项是T7=${C}_{10}^{6}$•44•x3 =53 760x3
(3)∵此展开式共有11项,∴二项式系数最大的项是第6项,
∴T6=${C}_{10}^{5}$•45•${x}^{\frac{25}{12}}$=258048•${x}^{\frac{25}{12}}$.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知lgcosx=-$\frac{1}{2}$,则cos2x=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△AOB中,$\overrightarrow{OA}=(2cosα,2sinα),\overrightarrow{OB}=(5sinβ,5cosβ),\overrightarrow{OA}•\overrightarrow{OB}=-5$,则△AOB的面积为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{5\sqrt{3}}}{2}$D.$5\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若0<x<π,则x与sinx的大小关系(  )
A.x<sinxB.x>sinxC.x=sinxD.与x的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简与求值:(不用计算器)
(1)cos18°cos42°-sin18°sin42°;(2)cos80°sin70°+cos10°sin20°
(3)cos20°cos(α-20°)-cos70°sin(α-20°)(4)cos215°-cos275°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x∈(0,π),则f(x)=cos2x+sinx的最大值是$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合$A=\{x|-\sqrt{2}≤x≤\sqrt{2}\}$,B={整数集},则A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0,1}C.{-2,-1,1,2}D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.求证:函数f(x)=$\sqrt{x}$+a在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和为Sn,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+4}$.
(1)求证:{$\frac{1}{{a}_{n}}$+$\frac{1}{3}$}为等比数列;
(2)求证:Sn<$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案