精英家教网 > 高中数学 > 题目详情

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

(Ⅰ)详见解析;(Ⅱ)

解析试题分析:(Ⅰ)连接,要证明的切线,只需证明,在中,利用三线合一易证;(Ⅱ)由弦切角定理知,故可证,列比例式可求,从而可求,即.
试题解析:(Ⅰ)连接,因为,则,所以的切线;
(Ⅱ)因为的切线,所以,又,所以,所以,则,,,又因为的直径,所以,又,所以,故,则,所以.
考点:1、圆的切线判定定理;2、三角形相似;3、弦切角定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC.

(1)求证:∠P=∠EDF;
(2)求证:CE·EB=EF·EP;
(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四点在同一圆上,的延长线交于点,点的延长线上.

(1)若,求的值;
(2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,,过点A的直线与其外接圆交于点P,交BC延长线于点D。

(1)求证:
(2)若AC=3,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上的一点,过的直线交直线,交过A点的切线于.

(Ⅰ)求证:是圆的切线;
(Ⅱ)如果,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.

(Ⅰ)求证:
(Ⅱ)若BC、PD相交于点M,则

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线为圆的切线,切点为,直径,连接于点.

(Ⅰ)证明:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D, E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B, E, F,C四点共圆。

证明:(Ⅰ)CA是△ABC外接圆的直径;
(Ⅱ)若DB=BE=EA.求过B, E, F,C四点的圆的面积与△ABC外接圆面积的比值.

查看答案和解析>>

同步练习册答案