精英家教网 > 高中数学 > 题目详情

如图,直线为圆的切线,切点为,直径,连接于点.

(Ⅰ)证明:
(Ⅱ)求证:.

(Ⅰ)见解析;(Ⅱ)见解析.

解析试题分析:(Ⅰ)连接,证明
(Ⅱ)证明,从而.
试题解析:(1)∵直线为圆的切线,切点为

       2分
为圆的直径,∴
          4分

              5分
(2)连接,由(1)得
,∴               8分
  ∴              10分
考点:1.证明三角形相似;2.同弧所对的圆心角和圆周角的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知AD是△ABC的内角平分线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。

(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.

求证:(Ⅰ);   (Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,在圆上,的延长线交直线于点.求证:

(Ⅰ)直线是圆的切线;
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知均在⊙O上,且为⊙O的直径.
(1)求的值;
(2)若⊙O的半径为交于点,且为弧的三等分点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,,过点的直线与其外接圆交于点,交延长线于点.
(1)求证:; (2)若,求 

查看答案和解析>>

同步练习册答案