精英家教网 > 高中数学 > 题目详情

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:利用对角互补得到四点共圆,利用相似得到边长相等.
试题解析:证明:(Ⅰ)
易知
所以四点共圆.    3分
(Ⅱ)由(Ⅰ)
,交
连结
,
所以
所以四点共圆.     6分
所以,由此,         8分
的中点,的中点,所以,所以OG ="OH" 10分
考点:四点共圆证明;相似证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P.

(1)证明:OM·OPOA2
(2)N为线段AP上一点,直线NB垂直直线ON,且交圆OB点.过B点的切线交直线ONK.证明:∠OKM=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆上三点,的角平分线,交圆,过作圆的切线交的 延长线于.

(Ⅰ)求证:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线为圆的切线,切点为,直径,连接于点.

(Ⅰ)证明:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△内接于⊙,,直线切⊙于点,弦,相交于点.

(Ⅰ)求证:△≌△
(Ⅱ)若,求长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;       (Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

几何证明选讲如图:已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点

证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB为⊙O的直径,过点B作⊙O的切线BCOC交⊙O于点EAE的延长线交BC于点D

(1)求证:CE2 = CD · CB
(2)若AB = BC = 2,求CECD的长。

查看答案和解析>>

同步练习册答案