精英家教网 > 高中数学 > 题目详情

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;       (Ⅱ)

(Ⅰ)详见解析;(Ⅱ)详见解析.

解析试题分析:(Ⅰ)依据已知条件寻求出∠DGC、∠F、∠CAB+∠DBA的关系,借助对角互补证明D,E,C,F四点共圆;(Ⅱ)结合(Ⅰ)的结果进一步得到点G是经过D,E,C,F四点的圆的圆心,所以∠GCE=∠GEC,延长GE,继而证明∠AEH+∠CAB=90°即可.
试题解析:(Ⅰ)如图,连结OC,OD,则OC⊥CG,OD⊥DG,
设∠CAB=∠1,∠DBA=∠2,∠ACO=∠3,
则∠COB=2∠1,∠DOA=2∠2.
所以∠DGC=180°-∠DOC=2(∠1+∠2).
因为∠DGC=2∠F,所以∠F=∠1+∠2.
又因为∠DEC=∠AEB=180°-(∠1+∠2),
所以∠DEC+∠F=180°,所以D,E,C,F四点共圆.

(Ⅱ)延长GE交AB于H.
因为GD=GC=GF,所以点G是经过D,E,C,F四点的圆的圆心.
所以GE=GC,所以∠GCE=∠GEC.   
又因为∠GCE+∠3=90°,∠1=∠3,
所以∠GEC+∠3=90°,所以∠AEH+∠1=90°,
所以∠EHA=90°,即GE⊥AB.
考点:1、四点共圆;2、圆的切线的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为半圆的直径,为半圆上一点,过点作半圆的切线,过点,交圆于点

(Ⅰ)求证:平分
(Ⅱ)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。

(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设AB,CD为⊙O的两直径,过B作PB垂直于AB,并与CD延长线相交于点P,过P作直线与⊙O分别交于E,F两点,连结AE,AF分别与CD交于G、H

(Ⅰ)设EF中点为,求证:O、、B、P四点共圆
(Ⅱ)求证:OG =OH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,在圆上,的延长线交直线于点.求证:

(Ⅰ)直线是圆的切线;
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,⊙的半径为3,两条弦交于点,且
求证:△≌△

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知均在⊙O上,且为⊙O的直径.
(1)求的值;
(2)若⊙O的半径为交于点,且为弧的三等分点,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.

(1)证明:
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,在中,平分于点,点上,
(I)求证:的外接圆的切线;
(II)若,求的长。

查看答案和解析>>

同步练习册答案