精英家教网 > 高中数学 > 题目详情

如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.

(Ⅰ)求证:
(Ⅱ)若BC、PD相交于点M,则

见详解                             

解析试题分析:(Ⅰ)根据切线的性质证明;(Ⅱ)由P、B、D、C四点共圆,又易证,即根据三角形相似得出相似比.
试题解析:
证明:(Ⅰ)如图,过点P作两圆公切线交BD于T,

连接PC ,∵AC为直径,


又BD与⊙O2相切于B,
PT为两圆公切线,



.                      (5分)
(Ⅱ) 由(Ⅰ)易证
又由(Ⅰ)知∠ACP=∠DBP,
∴P、B、D、C四点共圆,又易证
 
.                    (10分)
考点:圆的切线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.

求证:FD2=FB·FC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为圆的切线,为切点,的角平分线与和圆分别交于点

(1)求证   (2)求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M.

(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。

(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.

求证:(Ⅰ);   (Ⅱ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,在圆上,的延长线交直线于点.求证:

(Ⅰ)直线是圆的切线;
(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆外有一点,作圆的切线为切点,过的中点,作割线,交圆于两点,连接并延长,交圆于点,连续交圆于点,若

(1)求证:△∽△
(2)求证:四边形是平行四边形.

查看答案和解析>>

同步练习册答案