精英家教网 > 高中数学 > 题目详情

如图,已知四边形ABCD内接于,且AB是的直径,过点D的的切线与BA的延长线交于点M.

(1)若MD=6,MB=12,求AB的长;
(2)若AM=AD,求∠DCB的大小.

(1);(2).

解析试题分析:本题主要以圆为几何背景考查角的关系和边的关系,可以运用切割线定理、弦切角定理等数学知识来证明.第一问,先利用切割线定理得到,将已知条件代入,得到的长;第二问,因为,所以,由弦切角定理得,因为为直径,所以,而,所以,所以,所以,由于,所以.
试题解析:(1)因为的切线,由切割线定理知,
,又 ,
所以.    5分
(2)因为,所以,连接,又的切线,
由弦切角定理知,,     7分
又因为的直径,所以为直角,即.
,于是,所以,
所以.   8分
又四边形是圆内接四边形,所以,
所以   10分
考点:1.切割线定理;2.弦切角定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(拓展深化)如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.

(1)求证:△ABE≌△ACD;
(2)若AB=6 cm,BC=4 cm,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是半径为的圆的两条弦,它们相交于的中点,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上的一点,过的直线交直线,交过A点的切线于.

(Ⅰ)求证:是圆的切线;
(Ⅱ)如果,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足,的平分线交圆于,,延长交圆于,延长交圆于,连接.

(Ⅰ)证明://;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知圆⊙O1与圆⊙O2外切于点P,过点P的直线交圆⊙O1于A,交圆⊙O2于B,AC为圆⊙O1直径,BD与⊙O2相切于B,交AC延长线于D.

(Ⅰ)求证:
(Ⅱ)若BC、PD相交于点M,则

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,自⊙外一点引切线与⊙切于点的中点,过引割线交⊙两点. 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O是的外接圆,边上的高,是⊙O的直径.

(1)求证:
(II)过点作⊙O的切线交的延长线于点,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,

(Ⅰ)求证:AC是△BDE的外接圆的切线;
(Ⅱ)若,求EC的长.

查看答案和解析>>

同步练习册答案