精英家教网 > 高中数学 > 题目详情
14.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1作倾斜角为$\frac{π}{6}$的直线交双曲线的右支交于点P,若|PF2|=|F1F2|,则双曲线的离心率是(  )
A.$\sqrt{3}$-1B.$\frac{1+\sqrt{3}}{2}$C.$\sqrt{3}$+1D.$\frac{\sqrt{2}+\sqrt{6}}{2}$

分析 设出双曲线的左焦点,由双曲线的定义求得|PF1|,再由余弦定理和离心率公式计算即可得到所求.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1(-c,0),
由于|PF2|=|F1F2|=2c,
由∠PF1F2=$\frac{π}{6}$,
由双曲线的定义可得,|PF1|=2a+2c,
由余弦定理可得,|PF2|2=|PF1|2+|F1F2|2-2|PF1|•|F1F2|•cos$\frac{π}{6}$,
即有4c2=(2a+2c)2+4c2-2(2a+2c)•2c•$\frac{\sqrt{3}}{2}$,
化简可得a=($\sqrt{3}$-1)c,
可得e=$\frac{c}{a}$=$\frac{1}{\sqrt{3}-1}$=$\frac{\sqrt{3}+1}{2}$.
故选:B.

点评 本题考查双曲线的定义、方程和性质,考查离心率的求法,运用定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点为F,若点F关于双曲线的渐近线的对称点在双曲线的右支上,则该双曲线的离心率是$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点A是双曲线右支上一点,∠AF2F1=$\frac{2π}{3}$,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{1+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{{n+8•{{(-1)}^{n+1}}}}{n}$对任意的n∈N+恒成立,则实数λ的最大值为-15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线2x2-y2=1的渐近线方程是(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将由直线y=$\frac{2}{π}x$和曲线y=sinx,x∈[0,$\frac{π}{2}$]所围成的平面图形绕x轴旋转一周,求所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线C2:$\frac{{y}^{2}}{{b}^{2}}$-$\frac{{x}^{2}}{{a}^{2}}$=1,其中b>a>0,则关于双曲线C1与C2的命题.
①渐近线相同;
②焦点相同;
③离心率e1,e2满足$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=1;
④两个双曲线焦点在同一圆上,
其中所有正确的命题序号为(  )
A.①②③B.①③④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义某种运算M=a?b,运算原理如图所示,则式子$(2tan\frac{π}{4})?sin\frac{π}{2}+(4cos\frac{π}{3})?{(\frac{1}{3})^{-1}}$的值为(  )
A.4B.8C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知等差数列{an},若a1=-11,a4+a6=-6,则an=2n-13.

查看答案和解析>>

同步练习册答案