【题目】AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,则下列命题: 以AB为直径作圆,则此圆与准线l相交;;;;、O、N三点共线为原点,正确的是______ .
【答案】②③④⑤
【解析】
根据抛物线的定义,可知AP+BP=AM+BN,从而,所以以AB为直径作圆则此圆与准线l相切,故可判断①错,③对;由AP=AF可知∠AMF=∠AFM,同理∠BFN=∠BNF,利用AM∥BN,可得MF⊥NF,从而可判断②④正确;
对于 ⑤,不妨设抛物线方程为y2=2px,直线AB:,从而可证明kOA=kON,故可判断.
解:由题意,AP+BP=AM+BN
∴,∴以AB为直径作圆则此圆与准线l相切,故①错,③对;
由AP=AF可知∠AMF=∠AFM,同理∠BFN=∠BNF,利用AM∥BN,可得MF⊥NF,从而②④正确;
对于 ⑤,不妨设抛物线方程为y2=2px,直线AB:
联立可得y2﹣2kpy﹣p2=0
设,,则
∴,
∵y1y2=﹣p2,∴kOA=kON,故⑤正确
故答案为②③④⑤
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元.设该公司的仪器月产量为台,当月产量不超过400台时,总收益为元,当月产量超过400台时,总收益为元.(注:总收益=总成本+利润)
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过函数性质的学习,我们知道:“函数的图象关于轴成轴对称图形”的充要条件是“为偶函数”.
(1)若为偶函数,且当时,,求的解析式,并求不等式的解集;
(2)某数学学习小组针对上述结论进行探究,得到一个真命题:“函数的图象关于直线成轴对称图形”的充要条件是“为偶函数”.若函数的图象关于直线对称,且当时,.
(i)求的解析式;
(ii)求不等式的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, .
(1)求的单调区间;
(2)若图像上任意一点处的切线的斜率,求的取值范围;
(3)若对于区间上任意两个不相等的实数都有成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.
(Ⅰ)求证:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)证明:直线FG与平面BCD相交.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com