【题目】已知函数.
(Ⅰ)试判断1是的极大值点还是极小值点,并说明理由;
(Ⅱ)设是函数的导函数,求证: .
【答案】(Ⅰ)答案见解析;(Ⅱ)证明见解析.
【解析】试题分析:
(Ⅰ)求出函数定义域,求出,判断在1的两侧的正负,可得极值是极大还是极小值;
(Ⅱ)由(Ⅰ),求出导函数,为了确定的最小值,需要确定的单调性,以确定的正负,因此又要对求导,确定出在单调递增, 有唯一零点,且,这是的极小值点,
,现在要证这个极小值大于-1,设,再一次利用导数的知识证明在是单调减函数,从而.
试题解析:
(Ⅰ)的定义域为,
因为 ,所以.
当时, , ,所以,故在上单调递增;
当时, , ,所以,故在上单调递减;
所以1是函数的极小值.
(Ⅱ)由题意可知, ,
, ,令, ,
则,故在上单调递增.
又, ,
所以,使得,即,所以,
, 随的变化情况如下:
所以,
由式得,代入上式得
,
令, ,则,
故在上单调递减,所以,
又,所以,即,所以.
科目:高中数学 来源: 题型:
【题目】已知函数是奇函数.
(1)求实数的值;
(2)若,对任意有恒成立,求实数取值范围;
(3)设,若,问是否存在实数使函数在上的最大值为?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,则下列命题: 以AB为直径作圆,则此圆与准线l相交;;;;、O、N三点共线为原点,正确的是______ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线的参数方程为(, 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.
(1)当时,求曲线上的点到直线的距离的最大值;
(2)若曲线上的所有点都在直线的下方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程1表示焦点在x轴上的双曲线.
(1)命题q为真命题,求实数k的取值范围;
(2)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点P到定点的距离比它到直线的距离小2,设动点P的轨迹为曲线C.
求曲线C的方程;
若直线与曲线C和圆从左至右的交点依次为A,B,C,D求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆: 的焦距与椭圆: 的短轴长相等,且与的长轴长相等,这两个椭圆在第一象限的交点为,直线经过在轴正半轴上的顶点且与直线(为坐标原点)垂直, 与的另一个交点为, 与交于, 两点.
(1)求的标准方程;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com