精英家教网 > 高中数学 > 题目详情
17.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为$\frac{4}{9}$,乙、丙应聘成功的概率均为$\frac{t}{3}$(0<t<3),且三人是否应聘成功是相互独立的.
(1)若甲、乙、丙都应聘成功的概率是$\frac{16}{81}$,求t的值;
(2)在(1)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的分布列及其数学期望.

分析 (1)利用相互独立事件的概率公式列出方程求解即可;
(2)由(1)得乙应聘成功的概率,写出ξ的可能取值,
利用相互独立与互斥事件的概率公式和数学期望公式计算即可.

解答 解:(1)依题意,甲、乙、丙都应聘成功的概率是
P=$\frac{4}{9}$×$\frac{t}{3}$×$\frac{t}{3}$=$\frac{16}{81}$,
解得t=2;
(2)由(1)得乙应聘成功的概率为$\frac{2}{3}$,
则ξ的可能取值为0,1,2;
且P(ξ=0)=(1-$\frac{4}{9}$)×(1-$\frac{2}{3}$)=$\frac{5}{27}$,
P(ξ=1)=$\frac{4}{9}$×(1-$\frac{2}{3}$)+(1-$\frac{4}{9}$)×$\frac{2}{3}$=$\frac{14}{27}$,
P(ξ=2)=$\frac{4}{9}$×$\frac{2}{3}$=$\frac{8}{27}$;
所以随机变量ξ的分布列为:

ξ012
P$\frac{5}{27}$$\frac{14}{27}$$\frac{8}{27}$
数学期望为Eξ=0×$\frac{5}{27}$+1×$\frac{14}{27}$+2×$\frac{8}{27}$=$\frac{10}{9}$.

点评 本题考查了相互独立与互斥事件的概率计算与数学期望的计算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合M={x|f(x)=$\frac{lg(2x-1)}{\sqrt{3x-2}}$},N={x|x${\;}^{-\frac{1}{3}}$>1},则集合M∩N等于(  )
A.$({\frac{2}{3},+∞})$B.(1,+∞)C.$({\frac{1}{2},\frac{2}{3}})$D.$({\frac{2}{3},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若角α的终边与$\frac{π}{6}$的终边关于y轴对称,则角α的取值集合为$\{α|α=2kπ+\frac{5π}{6},k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且AB=2,若线段DE上存在点P使得GP⊥BP,则边CG长度的最小值为  (  )
A.4B.$4\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=cos(2x+$\frac{π}{3}$),则f'($\frac{π}{12}$)的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ为参数,r为大于零的常数),以坐标原点为极点,x轴的非负半轴为极轴建立坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)若曲线C1与C2有公共点,求r的取值范围;
(Ⅱ)若r=1,过曲线上C1任意一点P作曲线C2的切线,切于点Q,求|PQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知平面DBC与直线PA均垂直于三角形ABC所在平面,
(1)求证:PA∥平面DBC;
(2)若AD⊥BC,求证:平面DBC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x∈{y∈N|0≤y≤9},则log2x∈N的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,点$(n,{S_n})(n∈{N^*})$均在函数y=f(x) 的图象上.
(1)求数列{an}的通项公式;
(2)令${b_n}=\frac{a_n}{2^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案