精英家教网 > 高中数学 > 题目详情
2.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ为参数,r为大于零的常数),以坐标原点为极点,x轴的非负半轴为极轴建立坐标系,曲线C2的极坐标方程为ρ2-8ρsinθ+15=0.
(Ⅰ)若曲线C1与C2有公共点,求r的取值范围;
(Ⅱ)若r=1,过曲线上C1任意一点P作曲线C2的切线,切于点Q,求|PQ|的最大值.

分析 (Ⅰ)曲线C1消去参数r,求出曲线C1的直角坐标方程,由曲线C2的极坐标方程求出曲线C2的直角坐标方程,若C1与C2有公共点,则r-1≤|C1C2|≤r+1,由此能求出r的取值范围.
(Ⅱ)设P(cosα,sinα),由|PQ|2=|PC2|2-|C2Q|2=|PC2|2-1,得|PQ|2=cos2α+(sinα-4)2-1=16-8sinα≤16+8=24,由此能求出|PQ|的最大值.

解答 解:(Ⅰ)∵曲线C1:$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ为参数,r为大于零的常数),
∴消去参数r,得曲线C1的直角坐标方程为x2+y2=r2(r>0),
∵曲线C2的极坐标方程为ρ2-8ρsinθ+15=0,
∴曲线C2的直角坐标方程为x2+(y-4)2=1.
若C1与C2有公共点,则r-1≤$\sqrt{(0-0)^{2}+(4-0)^{2}}$≤r+1,
解得3≤r≤5,故r的取值范围是[3,5].
(Ⅱ)设P(cosα,sinα),由|PQ|2=|PC2|2-|C2Q|2=|PC2|2-1,
得|PQ|2=cos2α+(sinα-4)2-1=16-8sinα≤16+8=24,
当且仅当sinα=-1时取最大值,故|PQ|的最大值为2$\sqrt{6}$.

点评 本题考查考查直角坐标方程、极坐标方程、参数方程的互化、两圆相交、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别为内角A,B,C的对边,bsinA=(3b-c)sinB.
(1)若2sinA=3sinB,且△ABC的周长为8,求c;
(2)若b=2,∠B=60°,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,且Sn,an的等差中项为1.
(Ⅰ) 写出a1,a2,a3
(Ⅱ)猜想an的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若关于x的不等式x2-2ax-8a2<0的解集为(x1,x2),且x2-x1=15,则a=(  )
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$±\frac{15}{4}$D.$±\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为$\frac{4}{9}$,乙、丙应聘成功的概率均为$\frac{t}{3}$(0<t<3),且三人是否应聘成功是相互独立的.
(1)若甲、乙、丙都应聘成功的概率是$\frac{16}{81}$,求t的值;
(2)在(1)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z=(3-2i)2+2i(i为虚数单位),则z虚部为-10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正方形的边长为1,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}=\overrightarrow c$,则$|{\overrightarrow a+\overrightarrow b+\overrightarrow c}|$等于(  )
A.0B.3C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\sqrt{3-|x|}+lg\frac{{{x^2}-3x+2}}{x-2}$的定义域为(1,2)∪(2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a=log0.80.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为(  )
A.b<a<cB.a<c<bC.a<b<cD.c<a<b

查看答案和解析>>

同步练习册答案