14£®ÒÑÖªÕý·½Ðεı߳¤Îª1£¬$\overrightarrow{AB}=\overrightarrow a£¬\overrightarrow{BC}=\overrightarrow b£¬\overrightarrow{AC}=\overrightarrow c$£¬Ôò$|{\overrightarrow a+\overrightarrow b+\overrightarrow c}|$µÈÓÚ£¨¡¡¡¡£©
A£®0B£®3C£®$\sqrt{2}$D£®$2\sqrt{2}$

·ÖÎö ÓÉ$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$£¬|$\overrightarrow{c}$|=$\sqrt{|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}}$=$\sqrt{2}$£®¼´¿ÉµÃ³ö£®

½â´ð ½â£º¡ß$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{c}$£¬|$\overrightarrow{c}$|=$\sqrt{|\overrightarrow{a}{|}^{2}+|\overrightarrow{b}{|}^{2}}$=$\sqrt{2}$£®
¡à$|{\overrightarrow a+\overrightarrow b+\overrightarrow c}|$=|2$\overrightarrow{c}$|=2$\sqrt{2}$£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿Èý½ÇÐη¨Ôò¡¢¹´¹É¶¨Àí¡¢ÊýÁ¿»ýÔËËãÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªtan¦Á=-$\frac{{\sqrt{3}}}{3}$£¬¦ÁÊǵڶþÏóÏÞ½Ç
£¨1£©Çó¦ÁµÄÆäËüÈý½Çº¯ÊýµÄÖµ£»
£¨2£©Çó$\frac{sin¦Á+cos¦Á}{sin¦Á-cos¦Á}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬¾ØÐÎADFE£¬¾ØÐÎCDFG£¬Õý·½ÐÎABCDÁ½Á½´¹Ö±£¬ÇÒAB=2£¬ÈôÏß¶ÎDEÉÏ´æÔÚµãPʹµÃGP¡ÍBP£¬Ôò±ßCG³¤¶ÈµÄ×îСֵΪ  £¨¡¡¡¡£©
A£®4B£®$4\sqrt{3}$C£®2D£®$2\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=rcos¦È}\\{y=rsin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬rΪ´óÓÚÁãµÄ³£Êý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-8¦Ñsin¦È+15=0£®
£¨¢ñ£©ÈôÇúÏßC1ÓëC2Óй«¹²µã£¬ÇórµÄȡֵ·¶Î§£»
£¨¢ò£©Èôr=1£¬¹ýÇúÏßÉÏC1ÈÎÒâÒ»µãP×÷ÇúÏßC2µÄÇÐÏߣ¬ÇÐÓÚµãQ£¬Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÒÑÖªÆ½ÃæDBCÓëÖ±ÏßPA¾ù´¹Ö±ÓÚÈý½ÇÐÎABCËùÔÚÆ½Ã棬
£¨1£©ÇóÖ¤£ºPA¡ÎÆ½ÃæDBC£»
£¨2£©ÈôAD¡ÍBC£¬ÇóÖ¤£ºÆ½ÃæDBC¡ÍÆ½ÃæPAD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¶ËÎç½Ú·Å¼Ù£¬¼×»ØÀϼҹý½ÚµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬ÒÒ¡¢±û»ØÀϼҹý½ÚµÄ¸ÅÂÊ·Ö±ðΪ$\frac{1}{4}$£¬$\frac{1}{5}$£®¼Ù¶¨ÈýÈ˵ÄÐж¯Ï໥֮¼äûÓÐÓ°Ï죬ÄÇôÕâ¶Îʱ¼äÄÚÖÁÉÙ1ÈË»ØÀϼҹý½ÚµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{59}{60}$B£®$\frac{3}{5}$C£®$\frac{1}{2}$D£®$\frac{1}{60}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèx¡Ê{y¡ÊN|0¡Üy¡Ü9}£¬Ôòlog2x¡ÊNµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{4}{9}$C£®$\frac{3}{10}$D£®$\frac{2}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁÐÃüÌâÖÐÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®Èôa£¾b£¬Ôòac2£¾bc2
B£®ÊµÊýa£¬b£¬cÂú×ãb2=ac£¬Ôòa£¬b£¬c³ÉµÈ±ÈÊýÁÐ
C£®Èô$¦È¡Ê£¨{0£¬\frac{¦Ð}{2}}£©$£¬Ôò$y=sin¦È+\frac{2}{sin¦È}$µÄ×îСֵΪ$2\sqrt{2}$
D£®ÈôÊýÁÐ{n2+¦Ën}ΪµÝÔöÊýÁУ¬Ôò¦Ë£¾-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®²»µÈʽ£¨a-3£©x2+2£¨a-3£©x-4£¼0¶ÔÓÚÒ»ÇÐx¡ÊRºã³ÉÁ¢£¬ÄÇôaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-3£©B£®£¨-1£¬3]C£®£¨-¡Þ£¬-3]D£®£¨-3£¬3]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸