精英家教网 > 高中数学 > 题目详情
9.如图,已知平面DBC与直线PA均垂直于三角形ABC所在平面,
(1)求证:PA∥平面DBC;
(2)若AD⊥BC,求证:平面DBC⊥平面PAD.

分析 (1)过点D作DO⊥BC,交BC于O,则DO⊥平面ABC,从而PA∥DO,由此能证明PA∥平面DBC.
(2)推导出BC⊥PA,AD⊥BC,从而BC⊥平面PAD,由此能证明平面DBC⊥平面PAD.

解答 证明:(1)在△BDC中,过点D作DO⊥BC,交BC于O,
∵平面DBC与直线PA均垂直于三角形ABC所在平面,
∴DO⊥平面ABC,∴PA∥DO,
∵PA?平面DBC,DO?平面DBC,
∴PA∥平面DBC.
解:(2)∵直线PA⊥平面ABC,BC?平面ABC,
∴BC⊥PA,
∵AD⊥BC,AD∩PA=A,
∴BC⊥平面PAD,
∵BC?平面DBC,
∴平面DBC⊥平面PAD.

点评 本题考查线面平行的证明,考查面面垂直的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA+PE=10.
(1)求五棱锥P-ABCDE的体积的最大值;
(2)在(1)的情况下,证明:BC⊥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}是公差为-2的等差数列,其前5项的和S5=0,那么a1等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为$\frac{4}{9}$,乙、丙应聘成功的概率均为$\frac{t}{3}$(0<t<3),且三人是否应聘成功是相互独立的.
(1)若甲、乙、丙都应聘成功的概率是$\frac{16}{81}$,求t的值;
(2)在(1)的条件下,设ξ表示甲、乙两人中被聘用的人数,求ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在空间,下列命题中正确的是(  )
A.没有公共点的两条直线平行B.与同一直线垂直的两条直线平行
C.垂直于同一平面的两条直线平行D.若直线a不在平面α内,则a∥平面α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正方形的边长为1,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b,\overrightarrow{AC}=\overrightarrow c$,则$|{\overrightarrow a+\overrightarrow b+\overrightarrow c}|$等于(  )
A.0B.3C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.随机变量X等可能取值为1,2,3,…,n,如果$P(X<4)=\frac{1}{2}$,那么n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别是△ABC中∠A,∠B,∠C所对应的边长,acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A;
(2)若a=2,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.将y=cosx的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将所得图象向左平移$\frac{π}{4}$个单位长度,则最后所得图象的解析式为(  )
A.y=cos(2x+$\frac{π}{4}$)B.y=cos($\frac{x}{2}$+$\frac{π}{4}$)C.y=sin2xD.y=-sin2x

查看答案和解析>>

同步练习册答案