精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{x}{1+x}$.
(1)画出f(x)的草图;
(2)指出f(x)的单调区间.

分析 (1)f(x)=$\frac{x}{1+x}$=1-$\frac{1}{1+x}$,函数f(x)的图象是由反比例函数y=-$\frac{1}{x}$的图象向左向上平移1个单位即可得出.
(2)由图象即可得出单调性.

解答 解:(1)f(x)=$\frac{x}{1+x}$=1-$\frac{1}{1+x}$,函数f(x)的图象是由反比例函数y=-$\frac{1}{x}$的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.
(2)由图象可以看出,函数f(x)的单调递增区间为(-∞,-1),(-1,+∞).

点评 本题考查了函数图象的变换与单调性,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.解下列关于x的不等式:
(1)-x2+2x+1<0
(2)$\frac{3x+3}{x}≤2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线x2=2py的准线方程为y=1,则焦点坐标是x2=-4y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=4sin(2x-$\frac{π}{3}$)+$\sqrt{3}$.
(1)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{2π}{3}$个单位,得到函数y=g(x)的图象,求g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某学校从高一学生500人,高二学生400人,高三学生300人,用分层抽样的方法从中抽取一个容量为60的样本,则应抽取高一学生的人数为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如表2×2列联表:
偏爱蔬菜偏爱肉类合计
50岁以下4812
50岁以上16218
合计201030
则可以说其亲属的饮食习惯与年龄有关的把握为(  )
附:参考公式和临界值表K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给定下列三个命题:
p1:若p∧q为假命题,则p,q均为假命题
p2:?a,b∈R,a2-ab+b2<0;
p3:在三角形ABC中,A>B,则sinA>sinB.
则下列命题中的真命题为(  )
A.p1∨p2B.p2∧p3C.p1∨(¬p3D.(¬p2)∧p3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O:x2+y2=1,圆M:(x-a)2+(y-$\sqrt{3}$a)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围为$[{\frac{1}{2},\frac{3}{2}}]∪[{-\frac{3}{2},-\frac{1}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中正确的是(1),(2),(4).
(1)f($\frac{1}{k}$)>$\frac{1}{k}$-1;(2)f($\frac{1}{k-1}$)>$\frac{1}{k-1}$;(3)f($\frac{1}{k-1}$)<$\frac{2-k}{k-1}$;(4)f($\frac{1}{k}$)<f($\frac{1}{k-1}$)

查看答案和解析>>

同步练习册答案