精英家教网 > 高中数学 > 题目详情
16.给定下列三个命题:
p1:若p∧q为假命题,则p,q均为假命题
p2:?a,b∈R,a2-ab+b2<0;
p3:在三角形ABC中,A>B,则sinA>sinB.
则下列命题中的真命题为(  )
A.p1∨p2B.p2∧p3C.p1∨(¬p3D.(¬p2)∧p3

分析 根据条件分别判断两个命题的真假,结合复合命题真假关系进行判断即可.

解答 解:p1:根据复合命题与简单命题真假之间的关系可知,若p∧q是假命题,则可知p,q至少有一个为假命题,即命题p1为假命题.
p2:∵a2-ab+b2=(a-$\frac{1}{2}$b)2+$\frac{3}{4}$b2≥0,
∴?a,b∈R,a2-ab+b2<0不成立,即命题p2为假命题.
在三角形ABC中,若A>B,则a>b,由正弦定理得sinA>sinB成立,即命题p3为真命题.
则p1∨p2为假命题,
其余为假命题,
故选:D.

点评 本题主要考查复合命题的真假判断,根据条件分别判断两个命题的真假是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\frac{{{2^{x+1}}}}{{{2^x}+1}}$.
(1)求证:函数f(x)在实数集R上为增函数;
(2)设g(x)=log2f(x),若关于x的方程g(x)=a有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“%”运算使(1,3)%[2,4]=(1,2),(2,5)%(4,5)=(2,4],则{1,2,3,4,5}%{1,3,5}%{2,4,6}=(  )
A.{1,2,3,4,5,6}B.C.{2,4}D.{1,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{x}{1+x}$.
(1)画出f(x)的草图;
(2)指出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知y=f(x)是定义在[-1,1]上的偶函数,与g(x)图象关于x=1对称,当x∈[2,3]时,g(x)=2a(x-2)-3(x-2)2,a为常数,若f(x)的最大值为12,则a=(  )
A.3B.6C.6或$\frac{15}{2}$D.$\frac{15}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.变量x,y满足约束条件$\left\{\begin{array}{l}{x+4y-13≥0}\\{2y-x+1≥0}\\{x+y-4≤0}\end{array}\right.$,且有无穷多个点(x,y)使目标函数z=x+my取得最小值,则m=(  )
A.-2B.-1C.1D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知斜三角形ABC
(1)求证:tanA+tanB+tanC=tanA•tanB•tanC;
(2)又若tanA+tanB+tanC>0,设f(x)=$\left\{\begin{array}{l}-1,x<0\\ 0,x=0\\ 1,x>0\end{array}$,记m=(sinA)cosB-(cosB)sinA,n=sin(A+B)-sinA-sinB,求2f(m)+f(n)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知双曲线的渐近线的方程为y=±$\sqrt{2}$x,并经过点P(2,$\sqrt{2}$).
(1)求双曲线的标准方程;
(2)经过双曲线的右焦点F2且倾斜角为30°的直线l交双曲线于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合U={x|x>0},∁UA={x|0<x<3},那么集合A=(  )
A.{x|x>3}B.{x|x≥3}C.{x|x<0或x>3}D.{x|x≤0或x≥3}

查看答案和解析>>

同步练习册答案