精英家教网 > 高中数学 > 题目详情
7.已知抛物线y2=2px(p>0)的焦点为F,其准线与x轴相交于点K,直线l过焦点F且倾斜角为α,则点K到直线l的距离为psinα.

分析 求得抛物线的焦点和准线,可得K的坐标,设出直线l:x=cotαy+$\frac{p}{2}$,运用点到直线的距离公式,计算即可得到.

解答 解:抛物线y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),
其准线为x=-$\frac{p}{2}$,
则K(-$\frac{p}{2}$,0),可设直线l:x=cotαy+$\frac{p}{2}$,
则点K到直线l的距离为d=$\frac{|-\frac{p}{2}-\frac{p}{2}|}{\sqrt{1+co{t}^{2}α}}$=$\frac{p}{\sqrt{\frac{co{s}^{2}α+si{n}^{2}α}{si{n}^{2}α}}}$=psinα.
故答案为:psinα.

点评 本题考查抛物线的方程和性质,同时考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z=5+6i,则|z+$\overline{z}$|的值为(  )
A.12B.12iC.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角α=2010°.
(1)把α改写成k•360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;
(2)求θ,使θ与α终边相同,且-360°≤θ<720°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.调研考试某数学老师对其所教的两个班获优秀成绩的同学进行了成绩统计,统计数据如右表:根据表中数据,请你判断优秀成绩是否与学生的性别有关.
男生优秀女生优秀合计
甲班16人20人36人
乙班10人14人24人
合计26人34人60人
参考公式及数据:Χ2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
Χ2≤2.706可认为变量无关联,Χ2>2.706有90%的把握判定变量有关联.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正六边形ABCDEF,在下列表达式中与$\overrightarrow{AC}$等价的有(  )
①$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$;②2$\overrightarrow{BC}$+$\overrightarrow{DC}$;③$\overrightarrow{FE}$+$\overrightarrow{ED}$;④2$\overrightarrow{ED}$-$\overrightarrow{FA}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c2=(a-b)2+6,C=$\frac{π}{3}$,则△ABC的面积(  )
A.3B.$\frac{9\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设1,a+bi,b+ai是一等比数列的连续三项,则a,b的值分别为(  )
A.a=±$\frac{\sqrt{3}}{2}$,b=±$\frac{1}{2}$B.a=-$\frac{1}{2}$,b=$\frac{\sqrt{3}}{2}$C.a=±$\frac{\sqrt{3}}{2}$,b=$\frac{1}{2}$D.a=-$\frac{1}{2}$,b=-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下函数在区间(0,$\frac{π}{2}$)上是减函数的是(  )
A.y=-cosxB.y=-sinxC.y=tanxD.$y=sin(x-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=Asin(ωx+φ)(ω>0),如果存在实数x1使得对任意的实数x,都有f(x1)≤f(x)≤
f(x1+2015)成立,则ω的最小值为(  )
A.$\frac{π}{2015}$B.$\frac{1}{2015}$C.$\frac{π}{4010}$D.$\frac{1}{4010}$

查看答案和解析>>

同步练习册答案