精英家教网 > 高中数学 > 题目详情
19.设1,a+bi,b+ai是一等比数列的连续三项,则a,b的值分别为(  )
A.a=±$\frac{\sqrt{3}}{2}$,b=±$\frac{1}{2}$B.a=-$\frac{1}{2}$,b=$\frac{\sqrt{3}}{2}$C.a=±$\frac{\sqrt{3}}{2}$,b=$\frac{1}{2}$D.a=-$\frac{1}{2}$,b=-$\frac{\sqrt{3}}{2}$

分析 利用等比中项及复数相等,计算即得结论.

解答 解:依题意,(a+bi)2=b+ai,
整理得:(a2-b2)+2abi=b+ai,
∴$\left\{\begin{array}{l}{{a}^{2}-{b}^{2}=b}\\{2ab=a}\end{array}\right.$,
解得:a=±$\frac{\sqrt{3}}{2}$、b=$\frac{1}{2}$或a=0、b=-1,
显然当a=0、b=-1时不满足题意,
∴a=±$\frac{\sqrt{3}}{2}$、b=$\frac{1}{2}$,
故选:C.

点评 本题考查等比数列的性质,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.某三棱锥的三视图如右图所示,则该三棱锥的最长棱的棱长为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足(4$\overrightarrow{a}$-3$\overrightarrow{c}$)+3(5$\overrightarrow{c}$-4$\overrightarrow{b}$)=$\overrightarrow{0}$,则$\overrightarrow{c}$=$-\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0)的焦点为F,其准线与x轴相交于点K,直线l过焦点F且倾斜角为α,则点K到直线l的距离为psinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的最大值为2$\sqrt{2}$,最小值为$-\sqrt{2}$,周期为$\frac{2π}{3}$,且图象过点(0,-$\frac{{\sqrt{2}}}{4}$),
(1)这个函数的解析式;
(2)写出函数的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设命题p:点(2x+3-x2,x-2)在第四象限;命题q:x2-(3a+6)x+2a2+6a<0,若?p是?q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos$\frac{π}{12}$+$\sqrt{3}$sin$\frac{π}{12}$的值为(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=ex-ax-1在R上单调递增,则实数a的取值范围为(  )
A.RB.[0,+∞)C.(-∞,0]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=-cosx•lg|x|的部分图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案