精英家教网 > 高中数学 > 题目详情
18.已知角α=2010°.
(1)把α改写成k•360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;
(2)求θ,使θ与α终边相同,且-360°≤θ<720°.

分析 (1)利用终边相同的角的表示方法,把角α写成β+k•360°(k∈Z,0°≤β<360°)的形式,然后指出它是第几象限的角;
(2)利用终边相同的角的表示方法,通过k的取值,求出θ,即可.

解答 解:(1)由2 010°除以360°,得商为5,余数为210°.
∴取k=5,β=210°,
α=5×360°+210°.
又β=210°是第三象限角,
∴α为第三象限角.
(2)与2 010°终边相同的角:
k•360°+2 010°(k∈Z).
令-360°≤k•360°+2 010°<720°(k∈Z),
解得-6$\frac{7}{12}$≤k<-3$\frac{7}{12}$(k∈Z).
所以k=-6,-5,-4.
将k的值代入k•360°+2 010°中,
得角θ的值为-150°,210°,570°.

点评 本题考查终边相同角的表示方法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=4x的准线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2(a>0)交于A,B两点,且F为抛物线的焦点,若△FAB为直角三角形,则a=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某三棱锥的三视图如右图所示,则该三棱锥的最长棱的棱长为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列{an}中,a1=1,${a_2}=\frac{2}{3}$,且$\frac{1}{{{a_{n-1}}}}+\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}(a∈{N^*},n≥2)$,则a6=(  )
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{7}{2}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知空间四点A(0,1,0),B(1,0,$\frac{1}{2}$),C(0,0,1),D(1,1,$\frac{1}{2}$),则异面直线AB,CD所成的角的余弦值为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是(  )
A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足(4$\overrightarrow{a}$-3$\overrightarrow{c}$)+3(5$\overrightarrow{c}$-4$\overrightarrow{b}$)=$\overrightarrow{0}$,则$\overrightarrow{c}$=$-\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0)的焦点为F,其准线与x轴相交于点K,直线l过焦点F且倾斜角为α,则点K到直线l的距离为psinα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=ex-ax-1在R上单调递增,则实数a的取值范围为(  )
A.RB.[0,+∞)C.(-∞,0]D.[-1,1]

查看答案和解析>>

同步练习册答案