【题目】已知数列{an}的前n项和为Sn,Sn=nan+n(n﹣1),且a5是a2和a6的等比中项.
(Ⅰ)证明:数列{an}是等差数列并求其通项公式;
(Ⅱ)设
,求数列{bn}的前n项和.
【答案】(Ⅰ)an=13﹣2n; (Ⅱ)
.
【解析】
(Ⅰ)将n换为n+1,相减,运用数列的递推式和等差数列的定义和通项公式,以及等比数列中项性质,可得首项和公差,进而得到所求通项;
(Ⅱ)求得
(
),由数列的裂项相消求和,化简可得所求和.
(Ⅰ)Sn=nan+n(n﹣1),
可得Sn+1=(n+1)an+1+n(n+1),
相减可得Sn+1﹣Sn=(n+1)an+1﹣nan+n(n+1)﹣n(n﹣1),
化简an+1=(n+1)an+1﹣nan+2n,
即为nan+1﹣nan=﹣2n,
即有an+1﹣an=﹣2,
则数列{an}是公差d为﹣2的等差数列,
a5是a2和a6的等比中项,可得
,
即(a1﹣8)2=(a1﹣2)(a1﹣10),解得a1=11,则an=11﹣2(n﹣1)=13﹣2n;
(Ⅱ)
(
),
则数列{bn}的前n项和为
(
)
(
)
.
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中a是常数).
(1)求过点
与曲线
相切的直线方程;
(2)是否存在
的实数,使得只有唯一的正数a,当
时不等式
恒成立,若这样的实数k存在,试求k,a的值;若不存在.请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1-9的一种方法.则据此,3可表示为“
”,26可表示为“
”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9数字表示的两位数的个数为( )
![]()
A.9B.13C.16D.18
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E为线段AB上一点,且AE︰EB=7︰2,点F、G分别为线段PA、PD的中点.
![]()
(1)求证:PE⊥平面ABCD;
(2)若平面EFG将四棱锥P-ABCD分成左右两部分,求这两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的方程为
.
(1)以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,求曲线
的极坐标方程和直线
的极坐标方程;
(2)在(1)的条件下,直线
的极坐标方程为
,设曲线
与直线
的交于点
和点
,曲线
与直线
的交于点
和点
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数),
是
的导函数.
(Ⅰ)当
时,求证
;
(Ⅱ)是否存在正整数
,使得
对一切
恒成立?若存在,求出
的最大值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com